Movielogr

movie poster

Average Rating: 7/10

View on: IMDb | TMDb

Café Flesh (1982)

Directed by Stephen Sayadian

Most recently watched by noahphex

Overview

In the future, humans are divided into Sex Negatives and Sex Positives. The negatives get sick if they have sex so they go to Café Flesh to see positives who are forced to perform on stage for the negatives. Lana is a positive who everyone thinks is a negative and she must decide whether to come clean or not.

Rated NC-17 | Length 74 minutes

Actors

Kevin James | Richard Belzer | Michelle Bauer | Tantala Ray | Andy Nichols | Becky Savage | Paul McGibboney | Marie Sharp | Paul Berthell | Ken Starbuck | Dondi Bastone | Dennis Edwards | Angel Selby | D'Elliot Marcussi | Erica Nile | Jeff Conner | Joey Lennon | Kim Collier | Neil Poderecki | Sue Ravan | Terri Copeland | Hilly Waters | Autumn True | Elizabeth Anastasia | Polly Ester | Michael Cola

  BENCHMARKS  
Loading Time: Base Classes  0.0021
Controller Execution Time ( Overview / Movie Detail )  0.0239
Total Execution Time  0.0260
  GET DATA  
No GET data exists
  MEMORY USAGE  
520,512 bytes
  POST DATA  
No POST data exists
  URI STRING  
overview/movie_detail/2227
  CLASS/METHOD  
overview/movie_detail
  DATABASE:  movielogr_dev (Overview:$db)   QUERIES: 10 (0.0038 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '2a6d7bae92cb4a6a02e929a0f27acdcea3c64469'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('03707a06f6ec162db9fbc443e20ca071'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '2a6d7bae92cb4a6a02e929a0f27acdcea3c64469'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `MT`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
WHERE `MT`.`title_id` = 2227
 LIMIT 1 
0.0003   SET SESSION group_concat_max_len 12288 
0.0013   SELECT `MT`.`title_id`, `title`, `prefix`, `year`, `imdb_link`, `imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, MAX(MP.filename) AS filenameGROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movie_posters` `MPON `MT`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MT`.`title_id` = 2227
GROUP BY 
`title_id
0.0002   SET SESSION group_concat_max_len 1024 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2227
ORDER BY 
`date_viewedDESC
 LIMIT 10 
0.0003   SELECT AVG(NULLIF(rating_id2)) AS `avg_rating`
FROM `ml_movies`
WHERE `title_id` = 2227 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star`
WHERE `rating_id` = 16 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)