Movielogr

movie poster

View on: IMDb | TMDb

Pain & Gain (2013)

Directed by Michael Bay

Overview

Daniel Lugo, manager of the Sun Gym in 1990s Miami, decides that there is only one way to achieve his version of the American dream: extortion. To achieve his goal, he recruits musclemen Paul and Adrian as accomplices. After several failed attempts, they abduct rich businessman Victor Kershaw and convince him to sign over all his assets to them. But when Kershaw makes it out alive, authorities are reluctant to believe his story.

Rated R | Length 130 minutes

Actors

Peter Stormare | Ed Harris | Tony Shalhoub | Larry Hankin | Mark Wahlberg | Michael Rispoli | Dwayne Johnson | Tony Plana | Bill Kelly | Wladimir Klitschko | Rob Corddry | Anthony Mackie | Ken Jeong | Keili Lefkovitz | Kurt Angle | Yolanthe Sneijder-Cabau | Patrick Bristow | Nikki Benz | Brian Stepanek | Rebel Wilson | Vivi Pineda | Bar Paly | Christopher Jestin Langstaff | Gustavo Quiroz Jr. | Corinne Ferrer | Zack Moore | Kory Getman | Emily Rutherfurd | Persei Caputo | Gwendalyn Barker | Vannessa Nevader | Anthony 'Ace' Thomas | Andrea Bennetti | Jennifer Nicole Lee | Jessica Dykstra

  BENCHMARKS  
Loading Time: Base Classes  0.0016
Controller Execution Time ( Overview / Movie Detail )  0.0186
Total Execution Time  0.0203
  GET DATA  
No GET data exists
  MEMORY USAGE  
518,872 bytes
  POST DATA  
No POST data exists
  URI STRING  
overview/movie_detail/5960
  CLASS/METHOD  
overview/movie_detail
  DATABASE:  movielogr_dev (Overview:$db)   QUERIES: 10 (0.0032 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '882bbc90480d383bb22c265c8deb41f1d00623eb'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('ece41cbce079af44cd775de6bdb8316c'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '882bbc90480d383bb22c265c8deb41f1d00623eb'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `MT`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
WHERE `MT`.`title_id` = 5960
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0010   SELECT `MT`.`title_id`, `title`, `prefix`, `year`, `imdb_link`, `imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, MAX(MP.filename) AS filenameGROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movie_posters` `MPON `MT`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MT`.`title_id` = 5960
GROUP BY 
`title_id
0.0001   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 5960
ORDER BY 
`date_viewedDESC
 LIMIT 10 
0.0002   SELECT AVG(NULLIF(rating_id2)) AS `avg_rating`
FROM `ml_movies`
WHERE `title_id` = 5960 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star`
WHERE `rating_id` = 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)