Movielogr

movie poster

View on: IMDb | TMDb

In China They Eat Dogs (1999)

Directed by Lasse Spang Olsen

Overview

Arvid, a bank teller, is dumped by his girlfriend for being too boring and dull. Hoping to put some excitement in his life, Arvid helps stop a robbery at the bank. The wife of the would-be bank robber tracks Arvid down and tells him her husband was robbing the bank only so he could pay for medical treatments so they could have a child. The title is a reference to an axiom Arvid’s brother tells him: “In China, they eat dogs”; which makes him realize that there is no such thing as moral absolutism, and that whether something is right or wrong depends on the situation. Because of his revelation, he comes to sympathize with the bank robber. Imagining he can help the couple and prove himself to be a dangerous outlaw all at once, Arvid plots a robbery of his own bank with the help of his brother Harald and some fellow wannabe criminals.

Length 91 minutes

Actors

Nikolaj Lie Kaas | Peter Gantzler | Jesper Christensen | Dejan Cukic | Kim Bodnia | Brian Patterson | Tomas Villum Jensen | Line Kruse | Søren Sætter-Lassen | Lester Wiese | Lasse Lunderskov | Preben Harris | Slavko Labovic | Martin Spang Olsen | Trine Dyrholm | Anna Britt Mathiassen | Red Warszawa | Niels Brinch

  BENCHMARKS  
Loading Time: Base Classes  0.0016
Controller Execution Time ( Overview / Movie Detail )  0.0234
Total Execution Time  0.0251
  GET DATA  
No GET data exists
  MEMORY USAGE  
518,744 bytes
  POST DATA  
No POST data exists
  URI STRING  
overview/movie_detail/6569
  CLASS/METHOD  
overview/movie_detail
  DATABASE:  movielogr_dev (Overview:$db)   QUERIES: 10 (0.0047 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '18b194bd8850c9e751cae31a5b0b41941967cb5f'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('c19777f8a72a593451154f1f9a7d1087'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '18b194bd8850c9e751cae31a5b0b41941967cb5f'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `MT`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
WHERE `MT`.`title_id` = 6569
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0020   SELECT `MT`.`title_id`, `title`, `prefix`, `year`, `imdb_link`, `imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, MAX(MP.filename) AS filenameGROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movie_posters` `MPON `MT`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MT`.`title_id` = 6569
GROUP BY 
`title_id
0.0002   SET SESSION group_concat_max_len 1024 
0.0005   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 6569
ORDER BY 
`date_viewedDESC
 LIMIT 10 
0.0003   SELECT AVG(NULLIF(rating_id2)) AS `avg_rating`
FROM `ml_movies`
WHERE `title_id` = 6569 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star`
WHERE `rating_id` = 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)