Movielogr

movie poster

Rating: stars

Tags

Alamo Drafthouse Lamar

Seen 1 time

Seen on: 09/27/2010

Related Events

View on: IMDb | TMDb

Stake Land (2010)

Directed by Jim Mickle

Horror

Most recently watched by sensoria, noahphex, jenerator

Overview

Martin was a normal teenage boy before the country collapsed in an empty pit of economic and political disaster. A vampire epidemic has swept across what is left of the nation’s abandoned towns and cities, and it’s up to Mister, a death dealing, rogue vampire hunter, to get Martin safely north to Canada, the continent’s New Eden.

Rated R | Length 98 minutes

Actors

Connor Paolo | Kelly McGillis | Chance Kelly | Danielle Harris | Michael Cerveris | Adam Scarimbolo | Nick Damici | Marianne Hagan | Sean Nelson | Tim House | Bonnie Dennison | Traci Hovel | Jon Barton | James Godwin | Gregory Jones | Seamus Boyle | Sebastian Naskaris

Viewing Notes

This is my third vampire movie of Fantastic Fest, which is a good thing, since I love vampire lore. In the movie Stake Land directed by Jim Mickel the vampire apocalypse has taken place and many Lord of the Flies-esque ideals have taken over. Military factions, religious factions, and your run of the mill wanderer’s have their place. There are four main characters: Mister (Nick Damici), Martin (Connor Paolo), Sister (Kelly McGillis), and Belle (Danielle Harris). If you are up on your HBO mini-series’ you might even see Godfather (Chance Kelly) from Generation Kill or if you are the Fringe type you might recognize The Observer (Michael Cerveris) in his role as the leader of the Brotherhood.

The movie opens with Martin’s family being murdered while he watches and with Mister’s promise to Martin’s parents that he will take care of the young man. I am glad to know that Connor Paolo is in this role since most people, like myself, know him as Eric, Serena’s gay brother, on Gossip Girl. I am glad, because this means he isn’t being type-cast, which is a danger of being on a show like Gossip Girl. Mister is on his way to New Eden and with Martin in tow they become vampire slayers.

I am always intrigued when film makers and story tellers find new and interesting ways to deal with lore that has been around for centuries. This new lore includes a new idea where vampires are like zombies, they don’t think and they have an aversion to cold weather because it is hard for them to move. That being said, I think it worked. It’s like Lord of the Rings (a lot of walking), meets Lord of the Flies (a lot of factions), meets 30 Days of Night (a lot of animalistic vampires).

I would also like to think that there is a moral to this story. The current war in Iraq is explained and religious zealots are the “bad guys.” Overall, I really enjoyed this movie and would watch it again.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0257
Total Execution Time  0.0271
  GET DATA  
No GET data exists
  MEMORY USAGE  
540,376 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/jenerator/movie_detail/6405
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0065 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'aaf59f6879d7b4746055fe07aec0ba6448864fed'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('458b34cccfecfbe1f1a3142607a958fc'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'aaf59f6879d7b4746055fe07aec0ba6448864fed'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'jenerator'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 6405
AND `MV`.`user_id` = 61
 LIMIT 1 
0.0005   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 61
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0016   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 6405
AND `MV`.`user_id` = 61
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0004   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 6405 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 6405 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 61
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 61
AND `MV`.`movie_id` = 6405
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_idIS NULL
 LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 61
AND `MV`.`movie_id` = 6405
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 6405 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2821
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)