Movielogr

movie poster

Rating: 4 stars

Tags

Galaxy Highland

Seen 1 time

Seen on: 06/16/2011

View on: IMDb | TMDb

Take Me Home Tonight (2011)

Directed by Michael Dowse

Comedy

Most recently watched by zombiefreak, sleestakk, jenerator

Overview

Recent MIT grad Matt Franklin should be well on his way to a successful career at a Fortune 500 company, but instead he rebels against maturity by taking a job at a video store. Matt rethinks his position when his unrequited high-school crush, Tori, walks in and invites him to an end-of-summer party. With the help of his twin sister and his best friend, Matt hatches a plan to change the course of his life.

Rated R | Length 97 minutes

Actors

Ginnifer Goodwin | Anna Faris | Michael Biehn | Topher Grace | Bruce Nelson | Teresa Palmer | Michael Ian Black | Jennifer Sommerfeld | Seth Gabel | Clement von Franckenstein | Michelle Trachtenberg | Edwin Hodge | Angie Everhart | Robert Hoffman | Dan Fogler | Bob Odenkirk | Wade Allain-Marcus | Jay Jablonski | Lucy Punch | Chris Pratt | Demetri Martin | Nathalie Kelley | Candace Kroslak | Ryan Bittle | Jeanie Hackett | James Sharpe | Dustin Leighton | Meghan Stansfield | Megan Mieduch

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0257
Total Execution Time  0.0272
  GET DATA  
No GET data exists
  MEMORY USAGE  
538,272 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/jenerator/movie_detail/6594
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0060 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '7f2d941fad9ee9629771dd435495bd21200e69bd'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('5d73d0e95d17da393b6c9a578a8dc67e'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '7f2d941fad9ee9629771dd435495bd21200e69bd'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'jenerator'
 
LIMIT 1 
0.0004   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 6594
AND `MV`.`user_id` = 61
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 61
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0017   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 6594
AND `MV`.`user_id` = 61
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 6594 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 6594 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 61
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 61
AND `MV`.`movie_id` = 6594
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '18'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 61
AND `MV`.`movie_id` = 6594
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 6594 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2371
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)