Movielogr

movie poster

Rating: 5 stars

Tags

Netflix - Blu-Ray

Seen 1 time

Seen on: 01/07/2010

View on: IMDb | TMDb

Cloudy with a Chance of Meatballs (2009)

Directed by Phil Lord, Christopher Miller

Animation

Most recently watched by jenerator, BTSjunkie, noahphex, jenerator

Overview

Inventor Flint Lockwood creates a machine that makes clouds rain food, enabling the down-and-out citizens of Chewandswallow to feed themselves. But when the falling food reaches gargantuan proportions, Flint must scramble to avert disaster. Can he regain control of the machine and put an end to the wild weather before the town is destroyed?

Rated PG | Length 90 minutes

Actors

Anna Faris | James Caan | Benjamin Bratt | Bruce Campbell | Cody Cameron | Mr. T | Lauren Graham | Bill Hader | Lori Alan | Laraine Newman | Neil Patrick Harris | Ariel Winter | Neil Flynn | Danny Mann | Shane Baumel | Will Forte | Andy Samberg | Bobb'e J. Thompson | Bob Bergen | Mickie McGowan | Jess Harnell | Paul Eiding | Khamani Griffin | Phil Lord | Mona Marshall | Al Roker | Peter Siragusa | Chris Miller | Jan Rabson | John Cygan | Jeremy Shada | Isabella Acres | Sherry Lynn | Liz Cackowski | Angela Shelton | Melissa Sturm | Grace Rolek | Max Neuwirth | Gary A. Hecker | Marsha Clark | Will Shadley | Ann Dominic

Viewing Notes

UP would still be my pick of the best animated features of 2009, but Cloudy would be a close second. It tells the story of a young inventor Flint Lockwood (Bill Hader) who has tried all his life to invent something great. He finally does and it goes awry when he comes up with a machine that turns water into food. Launched into the sky to cause it to rain down edibles on a town that is now in dire trouble because it’s sardine sales are non-existent.

Loved so much about this movie, really. Hader’s voice and acting was a lot of fun and he pairs well with Anna Faris’ Samm Sparx, a nerdy weather woman who becomes his love interest. The standouts are Mr T as the local policeman who tries to keep Lockwood’s shenanigans from ruining the town and the monkey Steve (Neil Patrick Harris). Everytime they’re on screen it’s pure gold.

One thing I couldn’t help but think througout this movie was “man, it’d be really fucking gross to have food raining down on your city”. They address this by having it flung into a remote dump, but that smell would be horrendous. And the mold? Wow…Maybe it’s a sign of my aging to even be thinking that but I couldn’t get it out of my head.

I highly recommend Cloudy. It’s a fun movie for anyone of any age. I’m bummed I missed seeing it in 3D in the theatre.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0252
Total Execution Time  0.0266
  GET DATA  
No GET data exists
  MEMORY USAGE  
548,824 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/3987
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0068 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '7134ef81bfcd66044a7fd766a52691b7ec002222'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('79d7ee34f5f598109eee018de9a5ecea'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '7134ef81bfcd66044a7fd766a52691b7ec002222'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 3987
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0027   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 3987
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 3987 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 3987 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 3987
 LIMIT 1 
0.0001   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '22'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 3987
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 3987 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2496
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)