Movielogr

movie poster

Rating: 5 stars

Tags

DVD

Seen 1 time

Seen on: 01/15/2010

View on: IMDb | TMDb

Lake Mungo (2009)

Directed by Joel Anderson

Horror

Most recently watched by jakeneff, BTSjunkie, noahphex

Overview

After 16-year-old Alice Palmer drowns in a local dam, her family experiences a series of strange, inexplicable events centered in and around their home. Unsettled, the Palmers seek the help of psychic and parapsychologist, who discovers that Alice led a secret, double life. At Lake Mungo, Alice’s secret past emerges.

Rated R | Length 87 minutes

Actors

Chloe Armstrong | Tamara Donnellan | Talia Zucker | Rosie Traynor | David Pledger | Martin Sharpe | Steve Jodrell | Scott Terrill | Natasha Herbert | Judith Roberts | Robin Cuming | Stephanie Capiron | Richard Kelly | Carole Patullo | Michael Ormond Robinson | Sara Moroney | Tania Lentini | Cameron Strachan | Marcus Costello | John Dunn | Laurie Dunn | Kirsty McDonald | James Lawson | Phillip Boltin | Glenn Luck | Simon Wilton | Charles Armytage | Helen Bath | Tammy McCarthy | Courtney Te'ray | Kimberley Bumpstead | Jason Ball | Barney Wursthorn | Scott Dower | Frank Nyhuis | Anika Steel | Claire Astbury | Roberto J. Salvatore | Jida

Viewing Notes

Quickest comparison you can make about Lake Mungo is to Blair Witch or Paranormal Activity. This is because it’s told as a documentary, a story about a young 16 year old girl who goes missing while out at an Australian lake with her family. Her body is found and a few days later the family starts experiencing a ghost in their house. Mungo weaves together the story with interviews with her family, TV news footage, taped interviews, stills and more.

I was freaked the hell out by Lake Mungo, the way I was when I first saw Blair Witch. In fact I’m writing this review, alone in my house with a rainstorm going on this evening and that shit ain’t helping. And I’m not even a believer in ghosts and I hate those stupid ghost hunter shows on TV, but this movie got under my skin.

For me Paranormal Activity bordered on comedy. Very little of it was effective and scary, minus two scenes. What made Mungo so great was a combination of things that put together, ended up being a solid film. First off, the sound design is phenomenal. It’s a perfect blend of creepy music, very real handheld video camera sounds, and then I’m pretty sure the designer snuck in effects here and there because I kept hearing shit that shouldn’t of been there but was subtle enough to add to it. For instance I swear I heard breathing sounds during footage they were showing on the house. Just small things like that helped to add to the entire package.

Also, the cinematography in Lake Mungo is dead on. If not told it’s a movie it’s very easy to believe that this really is a documentary. The TV news station footage is dead on realistic, as is the interview footage and “found” videos. Obviously a lot of that is pretty easily faked nowadays but something about how they put it together had me almost believing I was watching a real documentary when I knew it wasn’t one. And I think that has a lot to do with the actors doing a bang up job, making me feel for them and drawing me in. Everything about the movie is told subtly and with a deftness that I think the American remake will likely miss.

So yeah, big fan of Lake Mungo. Something I did not expect from a movie to be part of the After Dark Horrorfest. It’s the first of the films from there I’ve seen and I think it’s going to be hard to top it. Good to know the quality is going up.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0224
Total Execution Time  0.0238
  GET DATA  
No GET data exists
  MEMORY USAGE  
549,136 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4008
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0058 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '712a989892598dd5d8663258b8b072f4d3e2bbaa'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('8746df7f2341839e3aa085f2e1afac19'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '712a989892598dd5d8663258b8b072f4d3e2bbaa'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4008
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0003   SET SESSION group_concat_max_len 12288 
0.0017   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4008
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0003   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4008 
0.0004   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4008 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4008
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '22'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4008
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4008 
0.0002   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2517
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)