Movielogr

movie poster

Rating: 4 stars

Tags

Netflix - DVD

Seen 1 time

Seen on: 01/16/2010

View on: IMDb | TMDb

Big Fan (2009)

Directed by Robert D. Siegel

Drama

Most recently watched by suspectk, noahphex, jenerator

Overview

Paul Aufiero, a 35-year-old parking-garage attendant from Staten Island, is the self-described “world’s biggest New York Giants fan”. One night, Paul and his best friend Sal spot Giants star linebacker Quantrell Bishop at a gas station and decide to follow him. At a strip club Paul cautiously decides to approach him but the chance encounter brings Paul’s world crashing down around him.

Rated R | Length 91 minutes

Actors

Michael Rapaport | Patton Oswalt | Marcia Jean Kurtz | Kevin Corrigan | Matt Servitto | Robert D. Siegel | Miranda Rhyne | Joe Garden | Josh Trank | Chyna | Jonathan Hamm | Serafina Fiore | Gino Cafarelli | Sidné Anderson | Joe Caniano | Yori Tondrowski | Polly Humphreys | Jason Hardee | Scott Ferrall | Julian Lane | Caroline Gallo | Maya Louise Dispenza | Cookie Bradshaw | Malik Jacobs | Ronnie Amadi | Angel Estrada | Billy Parker | Farouk Adelekan | Mifit Hodzic | Michael Mederrick | Nicole Mcgee | Latawnya Haynes | Dan Dinenberg | Sebastian Elliott | Christiane Figueiredo | Carla Carvalho | Natasha | Makenzie | Christine Elizabeth | Nick Stevens | Wilson Hall | Alan P. Cross | Nick Gallo | Ginny Sisti | Paul Sisti | Jordan Cohn | Daniella Tineo-Cohn | Debbie Sutin | Tom Epstein | Cabbie

Viewing Notes

Patton Oswalt fucking shines in Big Fan. I don’t know what it is about comedians who can come in and play these amazing serious roles, but he’s continuing the tradition that Adam Sandler (Punch Drunk Love) and Robin Williams (One Hour Photo/World’s Greatest Dad) have set the bar on.

What’s great about Big Fan is that it felt so real and instead of taking this guy’s love of football and the drama of him dealing with his family and playing it over the top is that there’s a quiet anger to Oswalt’s character. It’s like he knows his life sucks to everyone else, but he has his thing, his love of the NY Giants and that fuels everything else. Even if his shithead brother and sister-in-law or his mother, who he lives with, think he’s a fucking loser, he doesn’t care because he has one thing on his mind, the Giants.

Pairing Patton with Kevin Corrigan is also a bit of casting genius. They play off each other with a comfort that belies a long time friendship, further adding to the believability of the characters.

I loved Big Fan quite a bit. It was not only one of the better 2009 movies (and deserved of the praise I hear it got) but also one of the better performances. I’d put it up there with Tom Hardy’s role in Bronson.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0016
Controller Execution Time ( Members / Movie Detail )  0.0262
Total Execution Time  0.0279
  GET DATA  
No GET data exists
  MEMORY USAGE  
545,088 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4010
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 16 (0.0061 seconds)  (Hide)
0.0002   SELECT GET_LOCK('848d52755c78e935a7fd7a725da7757f'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'cfd05d367b356bea09d78749a96d53ed76a10fd3'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4010
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0020   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4010
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4010 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4010 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4010
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '18'
 
LIMIT 1 
0.0005   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4010
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4010 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2519
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)