Movielogr

movie poster

Rating: 2 stars

Tags

Netflix - Blu-Ray

Seen 1 time

Seen on: 01/16/2010

View on: IMDb | TMDb

Fame (2009)

Directed by Kevin Tancharoen

Musical

Most recently watched by noahphex, jenerator

Overview

An updated version of the 1980 musical, which centered on the students of the New York Academy of Performing Arts.

Rated PG | Length 107 minutes

Actors

Kelsey Grammer | April Grace | Bebe Neuwirth | Charles S. Dutton | Kasha Kropinski | Dale Godboldo | Debbie Allen | Kay Panabaker | Laura Johnson | Megan Mullally | Collins Pennie | James Read | Michael Hyatt | Earl Carroll | Cody Longo | Johanna Braddy | Tim Jo | Naturi Naughton | Kherington Payne | Walter Perez | Anna Maria Perez de Tagle | Galadriel Stineman | Julius Tennon | Leslie Ishii | Asher Book | Shelby Rabara | Tiffany Espensen | Paul Iacono | Malerie Grady | Loriel Hennington | Patrick Censoplano | Kathryn McCormick | Tracy Shibata | Heather Phillips | Tyne Stecklein | Krystal Ellsworth | Smyth Campbell | Paul McGill | Dani Jayden | Kristy Flores | Julia Faye West | Michael Eric Reid | Jeremy Hudson | Jessie Sherman | Stephanie Mace | Ryan Novak | Anthony Carr | Sharon Pierre-Louis | Katrina Norman | Colleen Craig | Kc Monnie | Scott Wood | Anoush NeVart | Ryan Surratt | Dominique Kelley | Britt Stewart | Amelia Brantley | Antonio Hudnell | Jameson Perry | Adam Waller | Paulina Gretzky | Maria Lingbanan | Donnie Smith | Kate Mulligan | Hopsin | Lock Lee | Oren Waters | Anastasia Boissier | Lisette Alvarez | Mike Munich | Jeremy Morgan | Danny Axley | Nick Lanzisera | Mallauri Esquibel | Kotoko Kawamura | J.T. Horenstein | Brandon O'Neal | Jason Williams | Gavin Turek | Bre Morgan | Ashley Galvan | Ava Bernstine | Kole | Rudy Villagrana | Moira 'Anjolie' Marfori | Ak'Sent | Huck Walton | Howard Gutman | Jennifer Bliman | Donte 'Burger' Winston | Tynisha Keli | Alex Liddy | Annika Daniel | Sophia Daniel | Eli Myers | Seth Daly | Miss Lola Rose | Nisha Bedi | Nick Grimes | Angela Alexander | Eva Ramirez | Whitney Barncord | Brittany Magill | Gino Barletta | Philomena Bankston | Ronald Antwine | Hailey Villaire | Deanna Knott | Krys Ivory | Betty Griffin-Keller | Rey Barcena | Kelli Shimada | Bobby Amamizu | Shari Tiandra Tinker | Chris Liu | Jermaine McGhee

Viewing Notes

Fame is a remake of the 1980 film. I actually used to watch the TV show as well. I have to say I thought this remake was pretty weak. The only story I found compelling was the story of the young actress, Jenny (Kay Panabaker). The rest of hte stories just seemed to disconnected and completely underdeveloped.

It had a good enough cast, even having Debbie Allan back and then Bebe Neuwirth, Charles Dutton, Kelsey Grammer, and Megan Mullaly. However even the good cast and decent musical numbers couldn’t save Fame from being just an average movie and nothing worth writing home about.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0013
Controller Execution Time ( Members / Movie Detail )  0.0254
Total Execution Time  0.0267
  GET DATA  
No GET data exists
  MEMORY USAGE  
556,600 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4015
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0082 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'f82a626095c84cbf57f18ad6e8a31622b8605a62'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('9f3fcb149420cb7c86db60b1e7ae18c4'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'f82a626095c84cbf57f18ad6e8a31622b8605a62'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4015
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0041   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4015
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0002   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4015 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4015 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4015
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '10'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4015
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4015 
0.0005   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2523
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)