Movielogr

movie poster

Rating: 3 stars

Tags

Netflix Watch Instantly

Seen 1 time

Seen on: 02/13/2010

View on: IMDb | TMDb

Deep in the Valley (2009)

Directed by Christian Forte

Comedy

Most recently watched by noahphex

Overview

Best friends, Carl and Lester, find themselves magically transported into an alternate universe straight out of a real-life adult movie. Hilarity ensues as they embark upon a journey of adult-themed mayhem while Carl ultimately finds true love in the most unlikely of places.

Rated R | Length 91 minutes

Actors

Scott Caan | Christopher McDonald | Denise Richards | Carla Harvey | Charlotte Salt | Tracy Morgan | Jay Jablonski | Sandra McCoy | Chris Pratt | Betsy Rue | Amy Paffrath | Rachel Specter | Brendan Hines | Nikki Griffin | Jenifer Rebecca Foster | Jacklyn Zeman | Kate Albrecht | Katherine Kendall | Lisa Gleave | Jessica Anderson | Kim Kardashian | Blanca Soto | Taryn Southern | Heather Vandeven | Olivia Alexander | Shayne Lamas | Tim Trobec | Madison Bauer | Olivia O'Lovely | Fumi Desalu-Vold | Michael C. Kricfalusi | Julia Faye West | Aubrie Lemon | Steve Paymer | Tiffany Fallon | Alison Waite | Caroline de Souza Correa | Ladae Bond | Ana Alexander | Donovan Del Pinto | Heidi Herschbach | Camille Calvin | Jessica Hall | Taylor Tunes | Deanna Smith | Jane Doole | Teresa Michelle Lee | Amber Hay | Damon Cardasis | Kieran Newton | Lindsey Kelley | Annie Huntley | Jordan Hagan | Jenelle Moreno | Anabel De La Cerna | Katie Cornwell | Koreana Hun | Brittany Evans | Amanda Evans | Jenilee Borek | Didier Cohen | Lisa Daniels | Sara Voss | Lexi Baxter | Stephanie Bartak | Renee Barton | Sergio Candido | Julianna David | Jackie Forge | Klaudia Ann Jaworski | Kylah Kim | Michael Lovern | Jessica Madison | Chuanda Mason | Evie Nicholson | Whitnee Patterson | Tami Ross | Brittany Thomas | Jarvia Udosen | Dianne Perry Dowler

Viewing Notes

Deep in the Valley tells the story of two guys (Chris Pratt and Brendan Hines) who get an old porno booth from a contest and it ends up transporting them to another dimension which is based in the world that the pornos take place. This means every girl is a porn starlet and all the generic porn conventions exist. The police department is women with bad acting in super tight vinyl outfits. The girls are cheerleaders and sorority girls.

With a little star power from Scott Caan, Denise Richards, Christopher McDonald, and Tracy Morgan it’s elevated above the average bawdy comedy, but not by much. In fact for a world based in porn and for a movie that bills itself as a bawdy comedy I’d of expected much, much more from it. The nudity was near nil though the jokes were alright.

All in all, despite having a decent supporting cast, hundreds of porn looking girls in skimpy outfits, and not bad performances from the main guys, the movie fell flat. I would of liked it to really push the limits and gone all out, but because it held back the movie ended up being somewhat of a bore at times.

For a Friday night drinking film, it’s better than most of the shitty National Lampoon options but not by much.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0225
Total Execution Time  0.0239
  GET DATA  
No GET data exists
  MEMORY USAGE  
547,720 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4066
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0065 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'aca672bb284042ccaa841b509215048de7583856'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('a7610045e50cde789db8c35cf56529b6'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'aca672bb284042ccaa841b509215048de7583856'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4066
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0025   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4066
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4066 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4066 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4066
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '14'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4066
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4066 
0.0002   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2572
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)