Movielogr

movie poster

Rating: 4 stars

Tags

Netflix Watch Instantly

Seen 1 time

Seen on: 02/26/2010

View on: IMDb | TMDb

Endless Bummer (2009)

Directed by Sam Pillsbury

Comedy

Most recently watched by noahphex

Overview

A group of teens and a veteran surfer take a road trip from Ventura, CA to the San Fernando Valley in order to track down a prized stolen surfboard.

Rated R | Length 87 minutes

Actors

Richmond Arquette | Vanessa Angel | Allison Scagliotti | Jane Leeves | Ray Santiago | Caitlin Wachs | Khan Chittenden | Colton James | Jim Piddock

Viewing Notes

After a night of drinking and talking movies with fellow film geeks, I brought up that I had this crazy idea to try and watch all the National Lampoon movies. Part of this is because I actually do have an affection for bad comedies. Sure, I love quality ones but I’m amazed that people continuously put out money for direct to DVD or cable comedies as often as they do. The easiest thing to screw up is a comedy, as it’s easily the hardest thing to make well, IMHO.

And back in the day National Lampoon was a sign of quality. Look at the classics they spit out: Animal House, Vacation (and it’s sequels) and then even the decent Loaded Weapon and Van Wilder. Since then it’s easily become a joke due to them picking up and releasing comedies under it’s moniker only helping to ruin the name for just about everyone.

What I find fascinating is trying to sort through these to find the gems. I don’t have any ideas that I’m going to be finding the next Super Troopers or Hangover, but if I can find something I think is smarter than it should be and has some good laughs then I consider it a win. Some comedies I think that have gone under the radar that I find hilarious are Out Cold and Men With Brooms.

So picking up the task of sorting through National Lampoon’s offerings isn’t actually that crazy to me. I’ve seen a good handful of their direct to DVD releases already.

Endless Bummer is the story of a guy in southern California who has his custom surfboard stolen and tries to get it back from a guy in the Valley. The plot is about as deep as backyard kiddie pool. However, it actually entertained me. Matthew Lillard is in it as the surfboard maker and then you have brief guest appearances from Circle Jerks,Joan Jett and Lee Ving (the lead singer of FEAR). Not only are they in it, but their music is as well. I’m a sucker for punk rock in films and it added something for me. But is the movie funny? No, it’s not hilarious but I did have some laugh out loud moments and I enjoyed seeing the ever so cute Allison Scagliotti who I really like in Warehouse 13. Her 80s throwback outfit and crimped hair is something to behold, though.

So while Endless Bummer isn’t a gold star comedy that blew me out of the water it was an entertaining film for a late night after some brews and I can’t complain about that.

I hope I stumble on more of these. If I do, then my task is worth it for me.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0251
Total Execution Time  0.0267
  GET DATA  
No GET data exists
  MEMORY USAGE  
539,008 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4082
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0063 seconds)  (Hide)
0.0006   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '9034d74e8a9815fd7f406280dac0ee8fd13cd388'
AND `ip_address` = '216.73.216.137' 
0.0002   SELECT GET_LOCK('8f2f87d18c17f293a8b164a452b9a635'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '9034d74e8a9815fd7f406280dac0ee8fd13cd388'
AND `ip_address` = '216.73.216.137' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0004   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4082
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0016   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4082
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4082 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4082 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4082
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '18'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4082
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4082 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2588
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)