Movielogr

movie poster

Rating: 2.5 stars

Tags

Netflix Watch Instantly

Seen 1 time

Seen on: 02/27/2010

View on: IMDb | TMDb

Cattle Call (2006)

Directed by Martin Guigui

Comedy

Most recently watched by noahphex

Overview

A guy starts a fake casting agency in hopes that he will meet his soul mate.

Rated R | Length 83 minutes

Actors

Diedrich Bader | Jonathan Winters | Thomas Ian Nicholas | John Capodice | John Mariano | Jack Maxwell | Nicole Eggert | Paul Mazursky | Lisa Arturo | Jenny Mollen | Rudy De Luca | Aimee Interrupter | Buck Kartalian | Suzan Brittan | Sandra Vidal | Chelsea Handler | Corbett Tuck | Mario Macaluso | Dahlia Waingort | Stephen Keyes | Ada Tai | Tanjareen Martin | Laura McLauchlin | Ana Guigui

Viewing Notes

Another National Lampoon film. Let’s get the standards out of the way…Who’s the guest stars in this one? Jonathan Winters as a studio tour guide and Chelsea Handler as one of the lead chicks. Oh yeah, it actually “stars” Nicole Eggert and Dietrich Bader. I actually like all of these people.

Simple plot, as always….a group of guys decide to pretend that they’re making a movie (irony!) to meet hot girls. Thomas Ian Nicholas (who has been a regular in the American Pie films) and Dietrich Bader are two of these dudes. The first part of the movie is a series of videos where they interview hot girls and have them answer inappropriate questions that probably would only be asked to porn stars. It’s also where they’re able to fit in the classic Lampoon nudity where many of the women get to show off their breasts.

The over-arcing plot, however is that Nicholas ends up falling for this charming young girl who falls for their bullshit and then of course he tells her about it, she gets mad, there’s a too long court case trial bit and they get back together and it’s all happy ever after.

While it’s not a terrible movie and probably decent enough for a Sunday to have on in the background while doing something else, the movie is hindered like so many other Lampoon films…it doesn’t go far enough. You really want a company associated with wacky comedies that pushed boundaries for so long to do just that, but Cattle Call a movie, by title and plot alone could easily go above and beyond, is just castrated. The romance between Nicholas and Jenny Mollen is cute enough. I would just prefer if these films were less romantic comedy and more bawdy humor.

I didn’t hate it and I think the cast is solid enough but the plot tends to drag and it just doesn’t push enough boundaries. A similar plot was done much better in National Lampoon’s Barely Legal.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0019
Controller Execution Time ( Members / Movie Detail )  0.0308
Total Execution Time  0.0327
  GET DATA  
No GET data exists
  MEMORY USAGE  
540,248 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4088
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0066 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'be0a9e2472a660da951a95b5c1b98603ee8b7553'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('618b7af6399946741f8a7c2fc065e134'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'be0a9e2472a660da951a95b5c1b98603ee8b7553'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4088
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0026   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4088
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4088 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4088 
0.0001   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0001   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4088
 LIMIT 1 
0.0001   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '12'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4088
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4088 
0.0002   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2594
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)