Movielogr

movie poster

Rating: 4 stars

Tags

Alamo Ritz

Seen 1 time

Seen on: 04/02/2010

View on: IMDb | TMDb

Hot Tub Time Machine (2010)

Directed by Steve Pink

Comedy

Most recently watched by Javitron, noahphex, jenerator, suspectk

Overview

Four pals are stuck in a rut in adulthood: Adam has just been dumped, Lou is a hopeless party animal, Craig is a henpecked husband, and Jacob does nothing but play video games in his basement. But they get a chance to brighten their future by changing their past after a night of heavy drinking in a ski-resort hot tub results in their waking up in 1986.

Rated R | Length 101 minutes

Actors

Thomas Lennon | Crispin Glover | John Cusack | Robert Wu | Lynda Boyd | Rob LaBelle | Lizzy Caplan | Rob Corddry | Clark Duke | Chevy Chase | William Zabka | Crystal Lowe | Diora Baird | Viv Leacock | Sebastian Stan | Charlie McDermott | Craig Robinson | Luke Ryan | Kellee Stewart | Ecstasia Sanders | Jessica Paré | Amy Esterle | Collette Wolfe | Lyndsy Fonseca | Julia Maxwell | Geoff Gustafson | Cole Carson | Paul Dzenkiw | Jacob Blair | Daren A. Herbert | Marie West | Josh Heald | Eli Jane | Adrienne Rusk | Michael Roberds | Keith Roenke | Blaine Anderson | Rhys Williams | Crystal Tisiga | Willy Lavendel | Amber Hay | Jamie Switch | Lars Anderson | Aliu Oyofo | Jake Rose | Brook Bennett | Austin Warren | Adam Sabla | Jocelyn C. Waugh | Curtis Santiago | Ryan Guldemond | Jeremy Page | Anthony Dallas | Odessa Rojen | Chad Garner | Donald MacDonald | Chad MacDonald | Anthony Pagni | Megan Holmes | Eddie Ruttle | Heathcliffe Scaddan | Peter Wilson | Brent Lister | Natalia Dawn | Ava Leemet

Viewing Notes

I grew up in the 80s and I still look back on it fondly. This comedy takes a Back to the Future approach to it and mixes it with more modern comedies like Old School and Hangover, where we have a group of male friends going through a transition and then have some crazy event that brings them together and makes them even closer buds.

And it works.

I found Hot Tub Time Machine to be pretty hilarious, from the most base puke jokes to the more clever stuff. And you get a little of each, which is why it’s such a good comedy. Just looking at the cast kind of clues you into what you’re going to get mixing John Cusak, Clark Duke, Craig Robinson and Rob Corddry. And with that cast you’d think maybe Cusak would be the standout, but this movie was all Corddry.

Corddry channels Will Smith in Old School mixed with a grown up Cartman from South Park. Totally foul mouthed, harassing his friends constantly, being obnoxious, loud and proud. It’s a role that can end up making you look an ass, but something about it had an edge of charm that made you like him and everything out of his mouth was gold. I’m sure he’s been waiting for a role like this.

If there was any detraction in the movie for me it was Chevy Chase, who I happen to love in Community but just seemed to be dialing it in, not giving me much but one good laugh.

They hit the 80s dead on, the story is tight (ya know despite being about a hot tub that’s a time machine…hey it works!), the actors are all great and the music…well, hell, I love 80s music of all sorts so it was a fucking treat.

I’ll be interested to see how it stand up in the long run but as it is, I’d probably watch HTTM over Hangover again if pressed to watch either, and I liked Hangover quite a bit.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0252
Total Execution Time  0.0267
  GET DATA  
No GET data exists
  MEMORY USAGE  
549,592 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4130
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0066 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '10ac06c0d852c8f6b636999500b355579dfe73e9'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('da4145e28e119e856bf873d18af10212'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '10ac06c0d852c8f6b636999500b355579dfe73e9'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4130
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0001   SET SESSION group_concat_max_len 12288 
0.0027   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4130
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4130 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4130 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4130
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '18'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4130
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4130 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2631
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)