Movielogr

movie poster

Rating: 2.5 stars

Tags

Netflix Watch Instantly

Seen 1 time

Seen on: 04/23/2010

View on: IMDb | TMDb

One, Two, Many (2008)

Directed by Michael DeLorenzo

Comedy

Most recently watched by noahphex

Overview

A modern-day romance that follows one man’s quest to find the girl of his dreams: one who wants to do it with him and another girl.

Rated R | Length 88 minutes

Actors

Mark Cuban | Sandra Taylor | Michael DeLorenzo | Koji Kataoka | Rena Riffel | John Melendez | Jim J. Bullock | Bellamy Young | Jeffrey Ross | Hudson Leick | Suzanna Keller | Terryn Westbrook | Mailon Rivera | Jennifer Sciole | Bonnie Aarons | Azalea Davila | Shelby Taylor | Elizabeth Ince | Martin Beck | Yves Bright | Donna Pieroni | Diana Terranova | Guilford Adams | Nicole Hawkyard | Madison Bauer | Lysander Abadia | Patrick Michael Buckley | Modi Rosenfeld | Michael Perri | Allie McCulloch | Jennie Ventriss | Kym Stys | Beth Fraser | Eric Reinholt | Jackson Manhan | Carla Biggert | Karen Yum | Dana Generally | Michael Lemelle | William Joseph Hill | Hallie Beaune Jacobson | Bowie Sims | Christopher Mormando | Eric Anderson | Molly Hanson | Lance Eaton | Lacee Bingham | Logan Jay Stern | Tyler Deitelbaum | Denise Fennell | Scott C. Bielecky | Tony Lauria | Liz Zazzi | Mike Gargani | Vincent Guisetti | Greta Melendez | Carlos Gomez | Kyle Baily | Kathe Sweeney | Annie O'Connell | Robert Funk | Jill Froch | Isaac Froch | Robyn Whitney

Viewing Notes

Written by and starring “Stuttering” John Melendez, of Stern fame, this bore is not one of the better NL films. He plays some guy who seems to be able to score girls despite being a clown for kid’s parties and losing every girlfriend because he wants them to be in an open relationship where they have threesomes.

On a base level, the movie succeeds where many National Lampoon films do, with lots of hot girls and breasts abound, but other than that it’s not very funny. For one, Stuttering John should never, ever carry a movie. He’s overshadowed by every real actor and/or comedian in the movie. Jeffery Ross, who I always love in his many Comedy Central Roast appearances is much funnier and Bellamy Young, who plays the girl who falls for his bullshit is a far superior actress to John, making his performance seem clownshoes.

I think the plot could have succeeded, and maybe John should stick to writing because the script wasn’t terrible, just his acting.

Not one of the better NL movies I’ve seen but at least it was better than Spring Break.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0246
Total Execution Time  0.0261
  GET DATA  
No GET data exists
  MEMORY USAGE  
547,160 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4157
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0063 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'd4e9314043eb263a01926e0e1bc144be93e94cfd'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('d7e65e132cefb5202fa173103a64443a'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'd4e9314043eb263a01926e0e1bc144be93e94cfd'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4157
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0020   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4157
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4157 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4157 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4157
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '12'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4157
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4157 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2655
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)