Movielogr

movie poster

Rating: 3 stars

Tags

Netflix Watch Instantly

Seen 1 time

Seen on: 07/02/2010

View on: IMDb | TMDb

Smiley Face (2007)

Directed by Gregg Araki

Comedy

Most recently watched by noahphex

Overview

Jane, a struggling but perpetually stoned actress, has a busy day ahead. She has several important tasks on her list, including buying more marijuana. Even though she already has a good start on the day’s planned drug use, she eats her roommate’s pot-laced cupcakes and embarks on a series of misadventures all over Los Angeles.

Rated R | Length 84 minutes

Actors

Anna Faris | Michael Shamus Wiles | Danny Trejo | Adam Brody | John Krasinski | Richard Riehle | Danny Masterson | Brian Posehn | Roscoe Lee Browne | Jayma Mays | Jane Lynch | William Zabka | John Cho | Joey Diaz | Marion Ross | Michael Hitchcock | Davenia McFadden | Dave Allen | Hans Ritter | Scott 'Carrot Top' Thompson | Dylan Haggerty | Jim Rash | Ben Falcone | David Goldman | Matthew J. Evans | Kai Cofer | Natashia Williams | Robert Michael Morris | Rick Hoffman | James C. Mathis III | Chad Mountain | Sam Nainoa

Viewing Notes

I can’t recall if I’ve seen any of Gregg Araki’s other films but I’d imagine this is outside the norm for him. I watched it for Anna Faris, who I usually find pretty adorable, even if she’s in retarded material like The House Bunny. Her ability to put herself out there into completely embarassing and rediculous roles I find to be cute. Here we get a pretty typical stoner comedy, seemingly with the only difference being that instead of us having a male lead, its a chick who’s doing dumb stoner stuff.

Throughout this, while it has some moments, I couldn’t help but feel if I was finding Faris’ character to be completely annoying or if I thought she was funny. If I’m wavering, it’s likely that I’m leaning more towards annoying. Why then do I not find the guys in Half Baked, Cheech and Chong, the Friday films, How High and the Harold and Kumar movies to not be totally annoying? I don’t know. I just think its painful to watch Faris, someone I really like and don’t see in that role that irked me. Or maybe because I’m used to seeing her as a ditz, adding an extra layer turns it from charming to irritating.

Anyways, I didn’t hate the movie but just had a hard time rooting for her in her misadventures. She gets what she deserves.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0249
Total Execution Time  0.0265
  GET DATA  
No GET data exists
  MEMORY USAGE  
538,416 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4226
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0065 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'd4e9314043eb263a01926e0e1bc144be93e94cfd'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('d7e65e132cefb5202fa173103a64443a'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'd4e9314043eb263a01926e0e1bc144be93e94cfd'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0004   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4226
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0017   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4226
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4226 
0.0004   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4226 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4226
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '14'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4226
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4226 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2716
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)