Movielogr

movie poster

Rating: 4 stars

Tags

DVD

Seen 1 time

Seen on: 06/12/2011

Related Events

View on: IMDb | TMDb

Porky's: Pimpin' Pee Wee (2009)

Directed by Brian Trenchard-Smith

Comedy

Most recently watched by noahphex, jenerator

Overview

Three college buddies search for sex in the summer holidays and end up starting a successful whorehouse.

Length 78 minutes

Actors

Adam Wylie | Carla Harvey | John Patrick Jordan | Sandra McCoy | Barry Livingston | Whitney Anderson | Christine Nguyen | Vic Polizos | James Moses Black | Diana Terranova | Russ Hunt | Katy Magnuson | Leslie Augustine | Angelina Bulygina | Jacki R. Chan | Mycole Metcalf | Cristin Michele | Sean Velie | Nicole Oring | Angie Papanikolas | Rossie Cottrell | Erica K. Evans | Monica Ford | Rod Hans | Stasha Kravljanac | Angela Nordeng | Shira Podolsky | Michael Prince | Chalet Trenchard-Smith | Christian Eric Billings | Stacey Leigh Dearman

Viewing Notes

Final movie of BTSNAT and always a Brian Trenchard-Smith movie. This time we were lucky enough to have a copy of this unreleased sequel to Porky\\‘s. Because of name issues it\\‘s officially known as Pimpin Pee Wee instead of \\“Porky\\‘s: The College Years\\”.

What we have is a totally raunchy sex comedy where Pee Wee is trying to get laid and ends up watching his rich uncle\\‘s house. That\\‘s when his buddies, Meat and Tommy decide to start throwing parties and meet up with Porky\\‘s hot daughter and start a brothel to fix the trashed house. Lots and lots of breasts in this and then many giant dick jokes. It\\‘s actually quite fun and one of the better sex comedies I\\‘ve seen the past few years, which is saying a lot since I\\‘ve seen every National Lampoon film, most Asylum sex comedies and quite of a few of the American Pie ones.

I really wish this would get a release someday.

It was a perfect end to the night.

I\\‘d say this was the best BTSNAT yet. The programming was all solid and flowed well and covered a lot of ground. It seemed everyone had a good time and then at the end of the night everyone was rewarded with an awesome tshirt that Jenni came up with the design of that mimics the BMX Bandits logo/shirts from BTS\\‘s iconic movie.

I cannot wait for the next one!

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0248
Total Execution Time  0.0264
  GET DATA  
No GET data exists
  MEMORY USAGE  
539,864 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/noahphex/movie_detail/4776
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0061 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'f7c97056ff9685678b71cf07de2418f5a8341565'
AND `ip_address` = '216.73.216.137' 
0.0002   SELECT GET_LOCK('d5eae7b0512fa0c8258f0dc884b49147'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'f7c97056ff9685678b71cf07de2418f5a8341565'
AND `ip_address` = '216.73.216.137' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'noahphex'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 4776
AND `MV`.`user_id` = 8
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0020   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 4776
AND `MV`.`user_id` = 8
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 4776 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 4776 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 8
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4776
 LIMIT 1 
0.0001   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '18'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 8
AND `MV`.`movie_id` = 4776
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 4776 
0.0002   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 3188
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)