Movielogr

movie poster

Rating: 2 stars

Seen 1 time

Seen on: 07/03/2011

View on: IMDb | TMDb

Transformers: Dark of the Moon (2011)

Directed by Michael Bay

Science Fiction

Most recently watched by sensoria, noahphex, jenerator

Overview

The Autobots continue to work for NEST, now no longer in secret. But after discovering a strange artifact during a mission in Chernobyl, it becomes apparent to Optimus Prime that the United States government has been less than forthright with them.

Rated PG-13 | Length 154 minutes

Actors

John Turturro | Hugo Weaving | David St. James | James Remar | Leonard Nimoy | Elya Baskin | Robert Foxworth | Frances McDormand | John Malkovich | Tyrese Gibson | Jennifer Williams | Shia LaBeouf | Francesco Quinn | Glenn Morshower | Mindy Sterling | George Coe | Kevin Dunn | Frank Welker | Patrick Dempsey | Josh Duhamel | Peter Cullen | Mark Ryan | Alan Tudyk | Maile Flanagan | Kathleen Gati | Julie White | John Di Maggio | Keiko Agena | Josh Kelly | Tom Virtue | Ravil Isyanov | Rich Hutchman | Lester Speight | Danny McCarthy | Ron Bottitta | Annie O'Donnell | Tom Kenny | Charlie Adler | Ken Jeong | Jess Harnell | Drew Pillsbury | Yasen Peyankov | Meredith Monroe | Keith Szarabajka | Greg Berg | Peter Murnik | Bill O'Reilly | Andrew Daly | Inna Korobkina | Buzz Aldrin | Ken Takemoto | Reno Wilson | Michael Daniel Cassady | Don Jeanes | Jack Axelrod | Alan Pietruszewski | Iqbal Theba | Lindsey Ginter | Kevin Sizemore | Brett Stimely | Anthony Azizi | John Turk | Scott Krinsky | Rosie Huntington-Whiteley | Christian Baha | Zoran Radanovich | Chris Sheffield | LaMonica Garrett | Larry Clarke | Sammy Sheik | Eugene Alper | Brian Call | Jay Gates | Derek Miller | Charlotte Labadie | Darren O'Hare | Cory Tucker | Mikal Vega | John H. Tobin | Stephen Monroe Taylor | Kenny Sheard | Patrick Pankhurst | Katherine Sigismund | Markiss McFadden | Michael Loeffelholz | Thomas Crawford | Scott C. Roe | James D. Weston II | Sean Murphy | Mark Golden | Peter A Kelly | Luis Echagarruga | Aaron Garrido | Dustin Dennard | Nick Bickle | Ajay James | Brett Lynch | Chris A. Robinson | Mitch Bromwell | Leidy Mazo | Danielle Fornarelli | Scott Paulson | John S. McAfee | Rebecca Cooper

Viewing Notes

No one should feel sorry for me, I pretty much knew what I was getting into with this movie. My kids wanted to see it (what kid wouldn’t?) so it was a foregone conclusion that we’d catch this in the theater.

We hit up the 12:15 matinee at our cheap seats theater, which meant we caught the 3D version since it was the first scheduled to play. At $5 a ticket, even for the 3D version, it was a pretty cheap outing (though I think I’d argue that even at $5 it was a waste).

I’d heard decent things about the 3D and I have to say it was well done for what it was. I typically stay away from 3D because I don’t think it adds much, is typically done badly, and is a pathetic attempt by Hollywood to scam more money from our pockets.

My expectations for this were pretty low, though I did go in predisposed to enjoy it rather than not, based on the mixed reactions from critics and other film enthusiasts on Twitter. Personally, I hoped it would be less crude (in both the sexual and drug departments), less misogynistic, less racist and less sweary than TF2, which I was embarrassed to have even taken my kids to. Well, it was less crude at least. Most of the overt sexual and all of the drug stuff that made TF2 so awful for kids didn’t make the cut. It was even less overtly racist (though there was still plenty of subtle racism going on). It was terribly misogynistic though. It’s saying a lot that Megan Fox’s character in the first two TF movies is more of a role model for strong women than Rosie Huntington-Whiteley’s character is in Dark of the Moon. She is mere wallpaper, with only a hint of plot vehicle attached.

I wasn’t even offended by that. I was more offended by the way Frances McDormand’s character was treated. The movie flies between treating her like a evil dyke, questioning her sexuality, and an object of crude sexual jokes once any supposed power she wielded had been eviscerated.

McDormand is an example of how to waste a great veteran actor/actress. I do have to admit that John Malkovich and Ken Jeong had great, funny characters. The unfortunate part is everything they did felt like it was a wholly different movie. Neither added much to the movie itself; instead they felt like brief interludes to entertain us while someone prepared the next scene for presentation.

On to Shia LaBeouf. His scrambly, mile-a-minute, confused schtick that actually worked fairly well in the first movie, is just grating here. Even more grating than in TF2. I was actually hoping and praying he’d die any number of times during the movie. After the TF series and Crystal Skull, I have absolutely no desire to see his face on a movie screen ever again.

The problems with LaBeouf’s character are just a glimpse at one of the main issues I have with this movie: lazy, shitty screenwriting. The plot is hackneyed, the dialogue laughable, the characterizations so shallow as to have no depth at all. I could overlook ALL of that if the action were epic.

Unfortunately, another huge issue is the fact that the action scenes were poorly executed. Even the massive spectacle of the attack on Chicago just feels flat and ineffective. Most of the fight scenes are poorly blocked and edited. The segments that ARE done well are handicapped by the crap that precedes and follows it. Any time I started to get into the action, something else just as quickly took me back out of it.

It’s the equivalent of having some awesome fireworks go off about five feet in front of you. You’re too close to actually enjoy the spectacle for what it is. Instead, you’re left with a bad taste in your mouth, ringing ears, and the distinct sense that you’ve been had.

I don’t hate Michael Bay. I don’t begrudge anyone who enjoyed this or any of his other movies. I actually liked Bay’s The Island quite a bit. I say this because it wasn’t a foregone conclusion that I’d hate Dark of the Moon. In fact, I went in thinking I might enjoy it for what it was.

I didn’t. I thought it was a pretty awful movie on almost every count. About the only thing I can say about it is that it was less offensive than Transformers 2. That says a lot.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0268
Total Execution Time  0.0284
  GET DATA  
No GET data exists
  MEMORY USAGE  
563,464 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/7104
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0076 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'e43360766a95014cfaef73516254751c5561172d'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('e85a7d1255521594ad4e8a5264f1d53b'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'e43360766a95014cfaef73516254751c5561172d'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 7104
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0034   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 7104
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 7104 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 7104 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7104
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '6'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7104
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 7104 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 3209
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)