Movielogr

movie poster

Rating: 8.5 stars

Seen 1 time

Seen on: 07/04/2011

  • Watched on: TV
  • Format: DVD

View on: IMDb | TMDb

Cruel Gun Story (1964)

Directed by Takumi Furukawa

Crime

Most recently watched by sensoria

Overview

Businessmen arrange the early release from prison of Togawa, serving time for taking revenge on the truck driver whose carelessness confined Togawa’s sister, Rie, to a wheelchair. They want Togawa to hijack an armored truck loaded with 120 million yen; their leverage is to promise him money for surgery for Rie. Togawa consents and plans the heist with three others. The plan is solid, but it doesn’t go smoothly. Togawa must improvise, there are traitors somewhere, and double-crosses mount. Can Togawa escape with enough money to help his sister and ensure a passage out of Japan?

Length 87 minutes

Actors

Chieko Matsubara | Tamio Kawaji | Shuntaro Tamamura | Hiroshi Kondô | Akifumi Inoue | Jô Shishido | Kôjirô Kusanagi | Hiroshi Nihon'yanagi | Zenji Yamada | Kôtarô Sugie | Saburo Hiromatsu | Masaru Kamiyama | Shirô Oshimi | Yuji Odaka | Kôji Yashiro | Yasukiyo Umeno | Minako Kozuki | Junichi Yamanobe | Yôko Yokota | Midori Mori | Yuzo Kiura | Kenzô Matsui | Yoshihiko Tabata | Koichi Uenoyama | Jun Miyazaki | Kyosuke Aihara | Gô Kuroda | Yoshiyuki Nemoto | Kasumi Motegi | Setsuko Watanabe | Kiyoshi Matsuoka | Sonosuke Niki | Koichi Sasaki | Masaaki Honme | Kakuo Watai | Masatoshi Kawase | Ei Shirai | Tooru Moriya | Kuniya Mizukawa | Tadao Kojima | Jirô Horisaki

Viewing Notes

What better way to celebrate the 4th of July than by watching a Japanese crime noir movie? No better way, I say!

I watched this in the morning, partly to wash away the stink of having seen Transformers: Dark of the Moon the day before.

Cruel Gun Story is part of Criterion’s Eclipse Series, Nikkatsu Noir; one of many noir movies to come out of the Nikkatsu film studio. This was the 5th or 6th Nikkatsu Noir film I’ve seen this year, and was the best yet.

As pointed out by my friend @sleestakk, Cruel Gun Story is obviously influenced by Kubrick’s The Killing. It borrows the general plot line and characterizations, though it veers off in different directions.

While some of the plot points can be silly if scrutinized too closely, on the whole it works well, and nothing really takes you completely out of the action.

The cinematography is great; very stark black and white, capturing the action in true noir style. I would go so far as to call it a minor noir masterpiece.

One interesting thing I noticed was that Cruel Gun Story makes use of the same bar set that was used in Rusty Knife. The bar is easily recognizable and plays a fairly important role in the movie, so it was weird to see it being reused from a previous movie, even though they’re separated by a good six years.

Even if you don’t want to dive headlong into the Nikkatsu Noir series, I would highly recommend giving Cruel Gun Story a watch. Easily the best of the series so far. I look forward to watching more.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0018
Controller Execution Time ( Members / Movie Detail )  0.0292
Total Execution Time  0.0309
  GET DATA  
No GET data exists
  MEMORY USAGE  
546,520 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/7105
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0058 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'f6fe7481e4b8fed28ea5f8fd720dbedea907d088'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('d4793c41990ddff4195d316cb1b815eb'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'f6fe7481e4b8fed28ea5f8fd720dbedea907d088'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0006   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 7105
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0017   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 7105
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 7105 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 7105 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7105
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '19'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7105
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 7105 
0.0002   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 4096
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)