Movielogr

movie poster

Rating: 7 stars

Tags

NWI Chicago black and white

Seen 1 time

Seen on: 05/20/2012

View on: IMDb | TMDb

Union Station (1950)

Directed by Rudolph Maté

Crime | Drama | Film Noir

Most recently watched by sensoria

Overview

Police catch a break when suspected kidnappers are spotted on a train heading towards Union Station. Police, train station security and a witness try to piece together the crime and get back the blind daughter of a rich business man.

Rated NR | Length 81 minutes

Actors

William Holden | Nancy Olson | Douglas Spencer | Kasey Rogers | Barry Fitzgerald | John Crawford | Edith Evanson | Jan Sterling | Dick Elliott | George Lynn | Robert Easton | Fred Graff | Robert O. Cornthwaite | Thomas E. Jackson | Herbert Heyes | Parley Baer | Howard Negley | James Seay | Richard Karlan | Clifton Young | Byron Foulger | Lyle Bettger | Harry Hayden | Allene Roberts | Gilman Rankin | Trevor Bardette | Paul Lees | Ralph Sanford | Ralph Montgomery | Queenie Smith | Jean Ruth | Brick Sullivan | Ralph Byrd | Ward Wood | Don Dunning | Bigelow Sayre | Charles Dayton | Lee Miller | Joe Warfield | Mike Mahoney | Fred Zendar | Charles Sherlock | Dorothy Vernon | Franklyn Farnum | William Meader | Barbara Knudson | Sumner Getchell | Howard M. Mitchell | Eric Alden | Jack Gargan | Ethan Laidlaw | Al Ferguson | Bernard Szold | Jerry James | Edgar Dearing | Gerry Ganzer | Charmienne Harker | June Earle | Joe Recht | Jack Roberts | Mike Donovan | Hans Moebus | Bob Hoffman | Betty Corner | Isabel Cushin

Viewing Notes

A pretty good noir set in Chicago (though some purported Chicago scenes are obviously set in L.A., like an exterior of “Union Station” that has a shadow of a palm tree falling across the outside brick facade; not to mention the fact that the outside of Chicago’s Union Station looked nothing like that).

A fairly young William Holden is fun to watch here, as is the primary villain played by veteran bay guy character actor Lyle Bettger.

Union Station does have some iconic Chicago scenery, such as the infamous stockyards, the interior of Union Station itself, and the famed municipal tunnels that used to be used to deliver coal to much of the loop area of downtown Chicago. Chicago’s famous EL trains (elevated trains) also feature prominently.

Well worth a watch with some excellent cinematography.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0244
Total Execution Time  0.0260
  GET DATA  
No GET data exists
  MEMORY USAGE  
548,048 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/7523
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0061 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '96be06e09723faf553ef8e4ff3c2d4dd3c6ccdd0'
AND `ip_address` = '216.73.216.137' 
0.0002   SELECT GET_LOCK('1ff11eab262b96bfac030bb8c2d7f96f'300) AS ci_session_lock 
0.0004   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '96be06e09723faf553ef8e4ff3c2d4dd3c6ccdd0'
AND `ip_address` = '216.73.216.137' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 7523
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0021   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 7523
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 7523 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 7523 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7523
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '16'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7523
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 7523 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 4353
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)