Movielogr

movie poster

Rating: 10 stars

Tags

Filipino exploitation 35mm facets cinemateque facets night school midnight movie Chicago

Seen 1 time

Seen on: 06/23/2012

View on: IMDb | TMDb

Wonder Women (1973)

Directed by Robert Vincent O'Neill

Action | Horror | Thriller

Most recently watched by sensoria

Overview

Dr. Tsu is a brilliant surgeon with her own exotic island off the coast of Manila. Using her sexy, all-girl army of martial-arts experts, Tsu kidnaps some of the world’s greatest athletes. She is able to transplant any body part, so she uses the athletes for spare parts to sell to the world’s richest men. Mike Harber is a womanizing, wise-cracking insurance investigator for Lloyd’s of London sent to Manila to investigate the disappearance of a jai-alai player, and becomes involved with Dr. Tsu’s mad mission.

Rated PG | Length 82 minutes

Actors

Sid Haig | Nancy Kwan | Marilyn Joi | Roberta Collins | Ross Hagen | Tony Lorea | Claire Polan | Robyn Hilton | Vic Diaz | Maria De Aragon | Joonee Gamboa | Shirley Washington | Bruno Punzalan | Gail Hansen | Eleanor Siron | Rick Revere | Rudy DeJesus | Leslie McRay | Wendy Green

Viewing Notes

I convinced myself to drive into Chicago to see this film at midnight as part of Facets’ Night School series despite the fact none of my friends were available to go with. I’m so glad I made the sacrifice because seeing Wonder Women in 35mm was probably a once in a lifetime experience. The fact that this is one of the best Filipino exploitation films I’ve seen made it even more worthwhile.

I rated it a 10 not because Wonder Women is a great movie in the true sense of the word, but because it is a near perfect ‘bad’ film. It’s unintentionally hilarious and stupid and goofy and that makes me love the hell out of it.

One of the best scenes is an incredibly long fight/chase scene between insurance investigator/ladies’ man Mike Barber, and femme army ‘commando’ Linda, who first beds Barber and then tries to kill him. The ensuing fight all but destroys the hotel room before breaking out into the street, with Linda making her escape first on foot, and then in a stolen Jeepny through the crowded streets of Manila. I swear to God, the entire scene lasts about 20 minutes and is equal parts French Connection-esque realism and the fakest shit you’ve ever seen in your life.

I have no idea if this movie exists on DVD, but if it does, I’m certainly going to track it down and make a point of showing it to every person I can!

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0244
Total Execution Time  0.0258
  GET DATA  
No GET data exists
  MEMORY USAGE  
549,992 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/8441
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0059 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'cc9a0e365aef4ead9867fea5e6a1f3a75245754e'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT GET_LOCK('edfd47a5cb67737440e3f983b6c59307'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'cc9a0e365aef4ead9867fea5e6a1f3a75245754e'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 8441
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0015   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 8441
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 8441 
0.0004   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 8441 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 8441
 LIMIT 1 
0.0001   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '22'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 8441
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 8441 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 4973
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)