Movielogr

movie poster

Rating: 6 stars

Tags

NWI Japan terrorism island

Seen 1 time

Seen on: 07/06/2012 (rewatch)

Related Events

View on: IMDb | TMDb

Battle Royale II: Requiem (2003)

Directed by Kenta Fukasaku, Kinji Fukasaku

Action | Drama | Science Fiction

Most recently watched by sensoria, sleestakk

Overview

It’s three years after the events of the original Battle Royale, and Shuya Nanahara is now an internationally-known terrorist determined to bring down the government. His terrorist group, Wild Seven, stages an attack that levels several buildings in Tokyo on Christmas Day, killing 8000 people. In order for the government to study the benefits of “teamwork”, the new students work in pairs, with their collars electronically linked so that if one of them is killed, the other dies as well. They must kill Nanahara in three days - or die.

Rated NR | Length 155 minutes

Actors

Sonny Chiba | Takeshi Kitano | Tatsuya Fujiwara | Aki Maeda | Mitsu Murata | Yuma Ishigaki | Riki Takeuchi | Soko Wada | Shugo Oshinari | Ryo Katsuji | Kazuki Yamamoto | Munetaka Aoki | Masaya Kikawada | Hitomi Hasebe | Yoshiko Mita | Masahiko Tsugawa | Makoto Sakamoto | Yoko Maki | Toshiyuki Toyonaga | Natsuki Katô | Ayana Sakai | Kazutoshi Yokoyama | Asami Katsura | Haruka Suenaga | Yuki Ito | Takeru Shibaki | Nana Yanagisawa | Ai Iwamura | Mika Kikuchi | Aja | Kei Tamura | Miyuki Kanbe | Yasutake Yuboku | Miku Kuga | Kotaru Kamijou | Yuuko Morimoto | Michiho Matsumoto | Kenji Harada | Ayumi Hanada | Ryoji Fujihira | Shoko Sato | Riasu Arama | Kouta Yamada | Ai Maeda | Maki Hamada | Takaaki Ikeyama | Minami Kanazawa | Chisato Miyao | Rika Sakagushi | Maika Matsumoto | Aiko Moriuchi | Ami Nakagawa | Takeshi Tanaka | Musashi Kubota | Kayo Nayuki | Sae Shimizu | Asuka Shingu

Viewing Notes

A sequel to the wildly successful Battle Royale that has neither the shock nor the impact of the first. While the plot of the first Battle Royale bordered on silly, the sequel pushes that completely off the cliff into the land of ridiculousness.

The thing that makes BRII a bit of a chore to sit through is all the gloppy melodrama and the extended soliloquies on, well, I’m not entirely sure what. BRII is chock full of the same kind of mock heroism that’s found in the Rambo movies, only without any discernible ‘cause’ driving the characters forward. In other words, they’re fighting for something, I just could never really tell what it was.

You’re better off ignoring the plot and just wallowing around in the violence, of which there’s plenty.

Streamed off Netflix Instant as part of my Battle Royale Double Feature Friday.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0259
Total Execution Time  0.0273
  GET DATA  
No GET data exists
  MEMORY USAGE  
550,208 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/8527
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0070 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '5cdc30b9d092d19926eef39ff1c45d8c4705a7e9'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('6e626a08089f12abe0fd22c40b60fec6'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '5cdc30b9d092d19926eef39ff1c45d8c4705a7e9'
AND `ip_address` = '216.73.216.111' 
0.0007   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 8527
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0027   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 8527
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0001   SET SESSION group_concat_max_len 1024 
0.0002   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 8527 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 8527 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 8527
 LIMIT 1 
0.0001   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '14'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 8527
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 8527 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 4578
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)