Movielogr

movie poster

Rating: 8 stars

Tags

Test

Seen 6 times

Seen on: 06/09/2013, 06/08/2013, 06/08/2013, 06/08/2013, 06/08/2013, 05/30/2013

View on: IMDb | TMDb

Star Trek Into Darkness (2013)

Directed by J.J. Abrams

Science Fiction

Most recently watched by sensoria, sensoria, sensoria, sensoria, sensoria, sensoria, sleestakk

Overview

When the crew of the Enterprise is called back home, they find an unstoppable force of terror from within their own organization has detonated the fleet and everything it stands for, leaving our world in a state of crisis.  With a personal score to settle, Captain Kirk leads a manhunt to a war-zone world to capture a one man weapon of mass destruction. As our heroes are propelled into an epic chess game of life and death, love will be challenged, friendships will be torn apart, and sacrifices must be made for the only family Kirk has left: his crew.

Rated PG-13 | Length 132 minutes

Actors

Deep Roy | Karl Urban | Leonard Nimoy | Heather Langenkamp | Akiva Goldsman | Zoe Saldana | Simon Pegg | Amanda Foreman | Zachary Quinto | Bill Hader | Nolan North | Anton Yelchin | Bruce Greenwood | Kevin Michael Richardson | Peter Weller | Scott Lawrence | Jeff Chase | James Hiroyuki Liao | Joseph Gatt | Alice Eve | Fred Tatasciore | Jay Scully | Chris Pine | Sean Blakemore | Marco Sanchez | John Cho | Matthew Wood | Benedict Cumberbatch | Noel Clarke | Arlen Escarpeta | Beau Billingslea | Audrey Wasilewski | Kellie Cockrell | Lee Reherman | Julianne Buescher | Jason Matthew Smith | Rob Moran | David Sobolov | Tony Guma | Nazneen Contractor | Gerald W. Abrams | Cynthia Addai-Robinson | Rene Rosado | Fernando Chien | Nick E. Tarabay | Tom Archdeacon | Britanni Johnson | Jeremy Raymond | Anjini Taneja Azhar | Elle Newlands | Usman Ally | Kiff VandenHeuvel | Ser'Darius Blain | Jon Lee Brody | Hiram A. Murray | Aisha Hinds | Seth Ayott | Jonathan Dixon | David Acord | Kimberly Arland | Max Chernov | James McGrath | Jesper Inglis | Joe Moses | Christopher Doohan | Jack Laufer | Melissa Paulo | Katie Cockrell | Berit Francis | Benjamin P. Binswanger | Andy Demetrio | Gianna Simone | Long Tran | Ningning Deng | Jodi Johnston | Colleen Harris | Monisola Akiwowo | Paul K. Daniel | David C. Waite | Drew Grey | Douglas Weng | Charlie Haugk | Marc Primiani | Jacob Rhodes | Kentucky Rhodes | Anthony Wilson | Eric Greitens | Melissa Steinman | Adam McCann | Jon Orvasky | Brian T. Delaney | Chris Gardner | Joe Hanna | Candice Renee | Emily Towers | Gina Hirsch | Jacqueline King

Viewing Notes

testing 4

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0016
Controller Execution Time ( Members / Movie Detail )  0.0238
Total Execution Time  0.0254
  GET DATA  
No GET data exists
  MEMORY USAGE  
553,016 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/9881
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0072 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'a5d92f86f30a6391453628b9ad5e40e6847db320'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('58c172ec70f33f15b46e590e845c5489'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'a5d92f86f30a6391453628b9ad5e40e6847db320'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 9881
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0027   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 9881
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 9881 
0.0006   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 9881 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 9881
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '18'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 9881
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 9881 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 5767
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)