Movielogr

movie poster

Rating: 6 stars

Seen 1 time

Seen on: 01/29/2006

View on: IMDb | TMDb

Memoirs of a Geisha (2005)

Directed by Rob Marshall

Drama | Romance

Most recently watched by sleestakk

Overview

In the years before World War II, a penniless Japanese child is torn from her family to work as a maid in a geisha house.

Rated PG-13 | Length 146 minutes

Actors

Gong Li | Zhang Ziyi | Michelle Yeoh | Ken Watanabe | Nobu Matsuhisa | Togo Igawa | Randall Duk Kim | Tsai Chin | Mako | Kenneth Tsang | Cary-Hiroyuki Tagawa | Diane Mizota | Ted Levine | Youki Kudoh | Paul Adelstein | Kōji Yakusho | Suzuka Ohgo | Navia Nguyen | Kaori Momoi | Zoe Weizenbaum | Samantha Futerman | Karl Yune | Elizabeth Sung | Shizuko Hoshi | Takayo Fischer | Laura Miro | Joseph Steven Yang | Cathy Shim | Rick Mali | Thomas Ikeda | Addie Yungmee | Eugenia Yuan | Aurelie Kyinn | Austin Michael Scott | Tohoru Masamune | Minae Noji | Jia Mae | Chieko Hidaka | Steve Terada | Clarissa Park | Aaron Takahashi | Yōko Narahashi | Julia Ling | Sophie Oda | James Huang | Hikari | Chad Cleven | Danton Mew | Kazumi Aihara | Miyako Tachibana | Brannon Bates | James Taku Leung | Ace Yonamine | Steffinnie Phrommany | Richard J. Bell | Nikki Tuazon | Ren Urano | Masa Kanome | Henry T. Yamada | Janelle Dote | Jasper Salon | Osamu Saito | Jennie Baek | Mami Saito | Allen Dam | Kotoko Kawamura | Jon Liggett | David Okihiro | Natsuo Tomita | Fumi Akutagawa | Koji Toyoda | Yasusuke Uike | Shûhei Mainoumi | Daisuke Dewaarashi | Anthony Begonia | Albert 'Sumo' Lee | Dino Rivera | Asako Takasue | Cameron Duncan | Faith Shin | Michelle Aguilar Camaya | Kim Hazel | Ashia Meyers | Shiho Miyazawa | Shannon Abero | Kiyoko Ando | Miki Fujitani | Wendy Lam | Kanako Miyamoto | Brooke Miyasaki | Nao Nojima | Shelly Oto | Cassidy Adams | Lena Ahn | Allison Chan | Deziree Del Rosario | Emilie Endow | Rosie Endow | Hannah Hwang | Emma Fusako Ishii | Amy Saki Kawakami | Stefani Lee | Teanna Lee | Melissa Morinishi | Michelle Obi | Kasey Okazaki | Jacqueline Osaki | Ayaka Oyama | Jade Refuerzo | La Na Shi | Stacy Suzuki | Miwa Tachibana | Jordan Tambara | Shaye Uyematsu | Etsuo Hongo | Tateo Takahashi | Masakazu Yoshizawa | Yuki Bird | Michael Chen | Maggie Hai-Uyen | Branden Weslee Kong | Ruffy Landayan | Teddy Lau | Stacey Lee | Doug Ming | Ryan Moriarty | Skye Nakamura | Ricky Pak | Catherine Kim Poon | Steve Sornbutnark | Clara Soyoung | Ray Tom

Viewing Notes

I twisted my own arm to get out and see this. Still not sure why because this movie was the disappointment that I expected it to be. Not terrible but completely lacks the soul of the book. Give it a generous 6/10 for being visually beautiful. But it’s a hollow shell of a film. FU, Oprah!

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0300
Total Execution Time  0.0314
  GET DATA  
No GET data exists
  MEMORY USAGE  
555,208 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sleestakk/movie_detail/7617
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0074 seconds)  (Hide)
0.0005   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'e9b55acb2838b99ce735520f1890e4468cc62281'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('082a3f6af91be7191ea9fd333fa8075d'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'e9b55acb2838b99ce735520f1890e4468cc62281'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sleestakk'
 
LIMIT 1 
0.0004   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 7617
AND `MV`.`user_id` = 9
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 9
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0031   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 7617
AND `MV`.`user_id` = 9
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 7617 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 7617 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 9
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 9
AND `MV`.`movie_id` = 7617
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '14'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 9
AND `MV`.`movie_id` = 7617
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 7617 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 4409
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)