Movielogr

movie poster

Rating: 4.5 stars

Seen 1 time

Seen on: 04/01/2009

View on: IMDb | TMDb

Get Smart (2008)

Directed by Peter Segal

Comedy | Action

Most recently watched by sleestakk

Overview

When members of the nefarious crime syndicate KAOS attack the U.S. spy agency Control and the identities of secret agents are compromised, the Chief has to promote hapless but eager analyst Maxwell Smart to field agent. He is partnered with veteran and capable Agent 99, the only spy whose cover remains intact. Can they work together to thwart the evil world-domination plans of KAOS and its crafty operative?

Rated PG-13 | Length 110 minutes

Actors

Larry Miller | Bill Murray | Anne Hathaway | Alan Arkin | James Caan | Steve Carell | John Farley | Mark Ivanir | Ken Davitian | Mo Gallini | Patrick Warburton | Masi Oka | Dwayne Johnson | Blake Clark | Geoff Pierson | David Koechner | Terence Stamp | John Abiskaron | Stephen Dunham | David Fabrizio | Nate Torrence | Terry Crews | Jonathan Loughran | Kevin Nealon | Todd Sherry | Bill Romanowski | Cedric Yarbrough | Nicholas Rich | David S. Lee | Tim DeKay | Kelly Karbacz | Bernie Kopell | Lindsay Hollister | Gunter Ziegler | Leonard Stern | Julian Scott Urena | Bonnie Hellman | Dalip Singh Rana | William Charlton | Ivy Bethune | Butch Klein | Danielle Bisutti | Brad Grunberg | Ryan Seacrest | Karri Turner | Dimitri Diatchenko | James Moses Black | David Aranovich | Arthur Darbinyan | Greg Joung Paik | Jessica Barth | Felisha Terrell | Peter Weireter | Thomas Garner | Jeff Tanner | Aurelius DiBarsanti | David Schaap | Joey Yu | Matthew Glave | Vinicius Machado | David A. Parker | Richard V. Licata | John Eddins | Mike Akrawi | Fred Fein | Sergei Priselkov | Alex Kudrytsky | Jennifer De Minco | Jane Gilchrist | Kerry Lai Fatt | Jasper Pendergrass | Michael P. Catanzarite | Sophia Lansky | Joshua Leary | Shant Sarkissian | Carl Crevier | Sam Hale | Jerry Sherman | Tatyana Kaboulova | Moshana Halbert | Sean Segal | Nadia David | Phoebe Price

Viewing Notes

This film is really bad. Wow. I wasn’t expected this to be good but was still amazed at how dull and lifeless this is and what a sad waste of talent. I will say that Anne Hathaway has never looked better; she actually has some meat on her bones and was rather alluring throughout. Probably the only thing that kept me watching.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0018
Controller Execution Time ( Members / Movie Detail )  0.0241
Total Execution Time  0.0259
  GET DATA  
No GET data exists
  MEMORY USAGE  
546,152 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sleestakk/movie_detail/8618
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0061 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '96923c34841e455cc789fe68fc9266225ff1f491'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('b62e49a3aaac530b608cf4f0a8597ab9'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '96923c34841e455cc789fe68fc9266225ff1f491'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sleestakk'
 
LIMIT 1 
0.0004   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 8618
AND `MV`.`user_id` = 9
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 9
 LIMIT 1 
0.0001   SET SESSION group_concat_max_len 12288 
0.0025   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 8618
AND `MV`.`user_id` = 9
ORDER BY 
`date_viewedDESC 
0.0001   SET SESSION group_concat_max_len 1024 
0.0002   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 8618 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 8618 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 9
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 9
AND `MV`.`movie_id` = 8618
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '11'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 9
AND `MV`.`movie_id` = 8618
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 8618 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 5085
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)