Movielogr

movie poster

Rating: 6.5 stars

Seen 1 time

Seen on: 04/06/2009

View on: IMDb | TMDb

The House Bunny (2008)

Directed by Fred Wolf

Comedy | Romance

Most recently watched by sleestakk

Overview

Shelley is living a carefree life until a rival gets her tossed out of the Playboy Mansion. With nowhere to go, fate delivers her to the sorority girls from Zeta Alpha Zeta. Unless they can sign a new pledge class, the seven socially clueless women will lose their house to the scheming girls of Phi Iota Mu. In order to accomplish their goal, they need Shelley to teach them the ways of makeup and men; at the same time, Shelley needs some of what the Zetas have - a sense of individuality. The combination leads all the girls to learn how to stop pretending and start being themselves.

Rated PG-13 | Length 97 minutes

Actors

Beverly D'Angelo | Anna Faris | Josh Richman | Colin Hanks | Christopher McDonald | Missy Stewart | Allen Covert | Rumer Willis | Kathleen Gati | Matt Barr | Hugh Hefner | Nick Swardson | Monet Mazur | Shaquille O'Neal | Charles Robinson | Kat Dennings | Mike Falkow | Emma Stone | Jonathan Loughran | Nikki DeLoach | Sean Salisbury | Robert Harvey | Kiely Williams | Tyson Ritter | Katharine McPhee | Jennifer Tisdale | Holly Madison | Bridget Marquardt | Ashley Schneider | Rachel Specter | Sarah Wright | Dan Patrick | Tony Ervolina | Dana Goodman | Angela Shelton | Owen Benjamin | Ben Lyons | Tyler Spindel | Sara Jean Underwood | Jay Hayden | Emily Wilson | Julia Lea Wolov | Danni Katz | Lauren Michelle Hill | Linsey Godfrey | Matt Leinart | Kendra Wilkinson | Ryan Rottman | Adam Shapiro | Hiromi Oshima | Jackie Benoit | Kimberly Makkouk | Michael Bernardi | Chris Titone | Mitch Gibney | Katheryn Cain | Amanda Columbus | Rachel Saydak | Marlon Hunter | Tanner Alexander Redman | Michelle Fields | Alison Coen | Katheryne Ashley Covert | Aya Nagasaki | Dale Thomas Cizmadia

Viewing Notes

I was expecting more of the subversion I’d heard about in a few critics’ reviews in The House Bunny. Unfortunately it’s not what I got. Maybe if I paid more attention but this isn’t the kind of flick that you want to give such focus. I kinda expected this and purposely threw this on to follow up the intensity of Funny Games. Anna Faris looked damn good. I had a hard time buying the quick turnaround via makeover of the nerd girl sorority despite it being a fantasy comedy. Not terrible but not great.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0013
Controller Execution Time ( Members / Movie Detail )  0.0258
Total Execution Time  0.0271
  GET DATA  
No GET data exists
  MEMORY USAGE  
546,304 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sleestakk/movie_detail/8665
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0075 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'ddc8845be57e1b34e931b16d7662a2b79b6d911d'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('a8ae58ef1ad1df43b2569a329a663dd2'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'ddc8845be57e1b34e931b16d7662a2b79b6d911d'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sleestakk'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 8665
AND `MV`.`user_id` = 9
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 9
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0033   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 8665
AND `MV`.`user_id` = 9
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 8665 
0.0002   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 8665 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 9
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 9
AND `MV`.`movie_id` = 8665
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '15'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 9
AND `MV`.`movie_id` = 8665
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 8665 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 5109
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)