Movielogr

movie poster

Rating: 4.5 stars

Tags

war horse steven spielberg 2011 movies

Seen 1 time

Seen on: 01/01/2012

View on: IMDb | TMDb

War Horse (2011)

Directed by Steven Spielberg

Drama | War

Most recently watched by pknail, tylermager

Overview

On the brink of the First World War, Albert’s beloved horse Joey is sold to the Cavalry by his father. Against the backdrop of the Great War, Joey begins an odyssey full of danger, joy, and sorrow, and he transforms everyone he meets along the way. Meanwhile, Albert, unable to forget his equine friend, searches the battlefields of France to find Joey and bring him home.

Rated PG-13 | Length 146 minutes

Actors

Emily Watson | Eddie Marsan | Peter Mullan | Jean-Claude Lecas | Philippe Nahon | Julian Wadham | David Kross | Geoff Bell | Hinnerk Schönemann | Thomas Arnold | David Thewlis | Patrick Kennedy | Nicolas Bro | Liam Cunningham | Niels Arestrup | Toby Kebbell | Maximilian Brückner | Roy Holder | Johnny Harris | Pip Torrens | Michael Ryan | Gerard McSorley | Anian Zollner | Rainer Bock | Benedict Cumberbatch | Hannes Wegener | Tom Hiddleston | Gary Lydon | David Dencik | Tam Dean Burn | Seamus O'Neill | Peter Benedict | Edward Bennett | Pat Laffan | Jeremy Irvine | Sebastian Hülk | Markus Tomczyk | Leonard Carow | Robert Emms | Philip Hill-Pearson | Maggie Ollerenshaw | Tony Pitts | Matt Milne | Trystan Pütter | Martin Dew | Celine Buckens | Irfan Hussein | Paul Alexander | Michael Kranz | Gunnar Cauthery | Peter McNeil O'Connor | Justin Brett | Callum Armstrong | Alan Williams | Beth Ogden

Viewing Notes

Beautiful, heartbreaking and yes at times a total cheese fest. In the best possible way War Horse destroyed me, rebuilt me only to destroy me again. Never drawn to tears, but the movie always had my heart.

Aided by breathtaking work from longtime collaborators Janusz Kaminski and John Williams, Steven Spielberg weaves a charming and effective tale of a boy and his horse. The story is fairly simple: boy meets horse, boy loves horse, boy loses horse. At this point the story differentiates a bit from the norm, this isn’t really the story of Albert the boy (played by Jeremy Irvine), but instead a story from the point of view of Joey the horse and his attempt to reunite with Albert despite all odds. It’s classic, crowd-pleasing, schmaltz that amazingly never feels like too much. Spielberg once again proves he’s a master of the craft and with a few refinements could have had a masterpiece.

The film is peppered with great English performances from the likes of Emily Watson, Tom Hiddleston, Benedict Cumberbatch, Toby Kebbell, David Thewlis and Eddie Marsen. While none of them are ever onscreen very long, it’s always just enough to make a big, emotional impact on the audience. I particularly enjoyed a moment where Joey is caught in barbed wire in the middle of No Man’s Land and soldiers from opposing forces played by the English Toby Kebbell and German Hinnerk Schonemann, work together to free the horse. It’s a pitch perfect moment and one of those great cinematic moments that tells so much with such a simple setup and execution. In any other movie directed by any other director, the moment would have rang heavy handed and false, but here it’s right in tune with the emotional roller coaster they audience is experiencing.

While much of the acting is great, the film could have benefited from a stronger presence in lead Jeremy Irvine in the first hour. Quite slow and all setup in the first act, Irvine isn’t nearly as interesting as his onscreen animal partner and the movie risks stumbling into not only a lethargically paced backslide but also losing an audience forced to watch plowing, auctioning and little else. Irvine does get better near the end of the film after experiencing first hand the effects of the first World War, but he’s outmatched by all the stellar performances he’s forced to compete with. Among these is what I believe is the best supporting performance in the entire film, Frechman Niels Arestrup. A heartbroken grandfather who only wants to protect his granddaughter from the horrors of war, he infuses pain, surprising optimism and rich complexity to complete a dynamite character cocktail guaranteed to drive you to tissues.

Bolstered by incredibly shot battle sequences and landscapes, War Horse is one of the most beautiful war films ever committed to celluloid. As disgusting and unpleasant WWI was, Spielberg and Kaminski do wonders and create an gorgeous array of memorable shots against the harsh and brutal realities of the time. On the opposite end, the depiction of trench warfare is shot with grimy closeups and just like the soldiers we are confined by the walls that “protect” us from the miserable area in between.

War Horse brings a lot to the table; beautiful cinematography, a heart wrenching yet inspired story, and of course the aforementioned amazing supporting performances. What I got was this. Love doesn’t stop. Love pushes us. Love fuels us. Anything is possible and never give up. Cliche and cheesy but it hit me hard. Call me a sentimental snooze, but War Horse got me and I loved every minute of it.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0015
Controller Execution Time ( Members / Movie Detail )  0.0258
Total Execution Time  0.0273
  GET DATA  
No GET data exists
  MEMORY USAGE  
559,944 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/tylermager/movie_detail/8978
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0063 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '8fdc7fbf627506180f6826cb094ca65fd87aa0f3'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('a3621a984baaa2c33a81cb3d2e218959'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '8fdc7fbf627506180f6826cb094ca65fd87aa0f3'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'tylermager'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 8978
AND `MV`.`user_id` = 39
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 39
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0021   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 8978
AND `MV`.`user_id` = 39
ORDER BY 
`date_viewedDESC 
0.0003   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 8978 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 8978 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 39
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 39
AND `MV`.`movie_id` = 8978
 LIMIT 1 
0.0001   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '20'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 39
AND `MV`.`movie_id` = 8978
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 8978 
0.0002   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2387
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)