Movielogr

movie poster

Rating: 4 stars

Tags

kill list ben wheatley horror thriller

Seen 1 time

Seen on: 01/07/2012

View on: IMDb | TMDb

Kill List (2011)

Directed by Ben Wheatley

Thriller | Horror | Drama

Most recently watched by sensoria, sensoria, sleestakk, BTSjunkie, noahphex, tylermager, noahphex

Overview

Nearly a year after a botched job, a hitman takes a new assignment with the promise of a big payoff for three killings. What starts off as an easy task soon unravels, sending the killer into the heart of darkness.

Rated NR | Length 95 minutes

Actors

Michael Smiley | Damien Thomas | Sara Dee | Neil Maskell | Robert Hill | MyAnna Buring | Ben Crompton | Robin Hill | Struan Rodger | Claire Jones | Alice Lowe | Mark Kempner | Emma Fryer | Steve Oram | Gareth Tunley | Zoe Thomas | Harry Simpson | Jamelle Ola | Esme Folley | Gemma Lise Thornton | Rebecca Holmes | Lora Evans

Viewing Notes

Many people got to see this movie last year, I’ve been jealous each time I’ve had to hear about it. Kill List was finally made available to more people through On Demand, iTunes and Amazon On Demand this past week. As excited I was to finally see the movie, I had to temper my expectations just a bit, you know just in case it doesn’t live up to all of the high praise I had been hearing for almost a year. Whatever I was expecting, it certainly wasn’t this.

I’m a fan of Ben Wheatley’s previous movie Down Terrace primarily due to the wonderful naturalistic dialogue and cinematography. The movie felt improvised without actually being improvised, the characters felt real and when the hard hitting stuff finally came it felt all the more rough because of the layered characters and situations they were put in. Kill List covers similar territory both plot-wise and the way it’s made. Wheatley is starting to find his voice and style and it’s nice going into the film already familiar to the odd, off kilter slow burn it presents. Financially trouble former hitman Jay, played by Neil Maskell, is in the middle of a failing marriage while also dealing with being unemployed until his fellow friend and hitman, Gal played by Michael Smiley, offers him a job that may get him out of the mess he’s in. To go any further would be a mistake, it’s best to go in knowing as little as possible.

I’m not going to spend too long retreading what I’ve already said. Wheatley’s style and trademark naturalism is still completely intact and just as well done as before. Where the film really distinguishes itself is halfway through when the line between drama, thriller and surprisingly horror is blurred. I’m not completely sold by the eventual outcome of the movie and the way it gets there but I have to admire the guts to take a dark path toward something unique and different from what we might be expecting. The performances from Neil Maskell and Michael Smiley are incredible and help sell the insane twists and turns the two friends take while trying to complete the “kill list”. I haven’t mentioned MyAnna Buring who is completely convincing as Jay’s fed-up wife, Shel. The fights they have are as brutal as the hits, it’s strangely entertaining watching the two completely disappear as the characters are at each others throats.

The cinematography at the beginning of the movie retains the very naturalistic approach previously explored in Down Terrace but as the movie progresses into darker territory the naturalism is mixed with a stark light and dark contrast that absolutely terrifies. The clever use of darkness in the frame and when light is introduced becomes powerful in displaying a potential horror around each corner. This becomes especially effective during the intense twists throughout the movie culminating in a terrifying and claustrophobic final sequence.

Kill List is a great movie that unfolds with a wildly unpredictable turn of events that will have people gasping at the final frame. It’ has some issues but it’s confidence helps overcome any problems I might have with the overall product.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0018
Controller Execution Time ( Members / Movie Detail )  0.0279
Total Execution Time  0.0297
  GET DATA  
No GET data exists
  MEMORY USAGE  
554,056 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/tylermager/movie_detail/8982
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0073 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '76365ffb9a800828336aa0f87dd9526787c7290b'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('ada7c982b6dd80083eb7a3b1cfffb3a5'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '76365ffb9a800828336aa0f87dd9526787c7290b'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'tylermager'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 8982
AND `MV`.`user_id` = 39
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 39
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0016   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 8982
AND `MV`.`user_id` = 39
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 8982 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 8982 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 39
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 39
AND `MV`.`movie_id` = 8982
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '18'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 39
AND `MV`.`movie_id` = 8982
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 8982 
0.0016   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 3095
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)