Movielogr

movie poster

Rating: 1.5 stars

Tags

man on a ledge sam worthington thriller crime

Seen 1 time

Seen on: 01/10/2012

View on: IMDb | TMDb

Man on a Ledge (2012)

Directed by Asger Leth

Crime | Thriller | Action

Most recently watched by tylermager

Overview

An ex-cop turned con threatens to jump to his death from a Manhattan hotel rooftop. The NYPD dispatch a female police psychologist to talk him down. However, unbeknownst to the police on the scene, the suicide attempt is a cover for the biggest diamond heist ever pulled.

Rated PG-13 | Length 102 minutes

Actors

Ed Harris | Jamie Bell | Robert Clohessy | Terry Serpico | Patrick Collins | Gerry Vichi | William Sadler | Elizabeth Banks | Edward Burns | John Comer | Kyra Sedgwick | Arthur J. Nascarella | Titus Welliver | J. Smith-Cameron | Anthony Mackie | Sam Worthington | Pooja Kumar | Jeff Grossman | Daniel Sauli | Sylvia Kauders | John Dossett | Jimmy Palumbo | James Andrew O'Connor | Génesis Rodríguez | Geoffrey Cantor | Afton Williamson | Mandy Gonzalez | Liz Holtan | Jason Kolotouros | Felix Solis | Joe Lisi | Ann Arvia | Jonathan Walker | Bill Walters | Michael Laurence | Frank Pando | Derrick T. Lewis | Brian James Pepe | Jabari Gray | Jason Furlani | Brett G. Smith | J. Bernard Calloway | Marmee Cosico | Don Castro | James Yaegashi | Barbara Marineau | Frank Anello | Candice McKoy | Johnny Solo | Erin Quill | Justin Chauncey | Cal Koury | Mario Moise Fontaine | Rick Pantera

Viewing Notes

Unfortunately this will likely be a quick few thoughts since the movie didn’t really make me feel much of anything. It’s the epitome of “well, that was something I watched”. Overly long and far too obvious, Man on a Ledge kills any sort of tension it might build up through the first act with uninspired performances from a typically solid cast featuring Sam Worthington(not typically solid), Ed Harris, Ed Burns, Elizabeth Banks, Jamie Bell, Anthony Mackie and Kyra Sedgwick (although really, does she even count? she’s barely there and might have 2 lines for a poorly written character). Everyone’s on autopilot barely scrounging anything that’s given to them with tedious dialogue and logic defying character choices.

The story, if you even care at this point, is a man sent to jail for a crime he didn’t commit decides to step onto a ledge to distract everyone from an actual crime he has planned in the next door building carried out by his brother in order to prove his innocence. Don’t cry spoiler, because seriously, that synopsis is exactly the entire movie. There are no big twists (save for one but if you can’t see that coming from a mile away you simply weren’t paying attention) and no particularly interesting character revelations but it does feature every cliche in the book. The movie not only holds your hand throughout the entire run time but dares to act as if these “revelations” are heart attack inducing.

Man on a Ledge is just plain boring and forgettable. Nothing great about the performances, a cliche ridden script and lazy direction make for yet another January radar blip that people will struggle to remember by the end of 2 hours much less the end of the weekend. Skip it.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0014
Controller Execution Time ( Members / Movie Detail )  0.0288
Total Execution Time  0.0303
  GET DATA  
No GET data exists
  MEMORY USAGE  
550,784 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/tylermager/movie_detail/8983
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0075 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '4551e71e42a15bf5c955b058fb848d9b3cdf0a49'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('889d6717304407b2f366939664f3d442'300) AS ci_session_lock 
0.0003   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '4551e71e42a15bf5c955b058fb848d9b3cdf0a49'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'tylermager'
 
LIMIT 1 
0.0005   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 8983
AND `MV`.`user_id` = 39
 LIMIT 1 
0.0005   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 39
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0028   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_five_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 8983
AND `MV`.`user_id` = 39
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0004   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 8983 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 8983 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 39
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 39
AND `MV`.`movie_id` = 8983
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_five_star` `MR`
WHERE `MR`.`rating_id` = '8'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 39
AND `MV`.`movie_id` = 8983
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 8983 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 5312
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)