Movielogr

movie poster

Rating: 9.5 stars

Seen 2 times

Seen on: 05/07/2012, 02/28/2011

View on: IMDb | TMDb

Heat (1995)

Directed by Michael Mann

Crime

Most recently watched by sensoria, sensoria

Overview

Obsessive master thief Neil McCauley leads a top-notch crew on various daring heists throughout Los Angeles while determined detective Vincent Hanna pursues him without rest. Each man recognizes and respects the ability and the dedication of the other even though they are aware their cat-and-mouse game may end in violence.

Rated R | Length 170 minutes

Actors

Mykelti Williamson | Dennis Haysbert | Robert De Niro | Natalie Portman | William Fichtner | Al Pacino | Tom Sizemore | Xander Berkeley | Rick Marzan | Susan Traylor | Martin Ferrero | Bud Cort | Val Kilmer | Hank Azaria | Diane Venora | Brian Libby | Steven Ford | Henry Rollins | Jon Voight | Danny Trejo | Jeremy Piven | Vince Deadrick Jr. | Amy Brenneman | Ashley Judd | Wes Studi | Ted Levine | Kim Staunton | Robert Miranda | Tone-Lōc | Kevin Gage | Yvonne Zima | Thomas Rosales, Jr. | Terry Miller | Paul Herman | Kathryn Mullen | Rick Avery | Jimmy N. Roberts | Jerry Trimble | Hazelle Goodman | Patricia Healy | Dan Martin | Kimberly Flynn | Iva Franks Singer | Niki Harris | Tom Noonan | Ricky Harris | Ray Buktenica | Cindy Katz | Mario Roberts | Farrah Forke | Max Daniels | Begonya Plaza | Kai Soremekun | Bill McIntosh | Andre McCoy | Viviane Vives | Brad Baldridge | Andrew Camuccio | Hannes Fritsch | Trevor Coppola | Paul Moyer | Mick Gould | Peter Blackwell | Manny Perry | Mary Kircher | Kenny Endoso | Daniel O'Haco | Tim Werner | Monica Lee Bellais | Annette Goodman | Gloria Koehn Straube | Melissa S. Markess | Jimmy Star | Wendy L. Walsh | Rainell Saunders | Brian Camuccio | Amanda Graves | Emily Graves | Thomas Elfmont | Ted Harvey | Rey Verdugo | Phillip Robinson | Darren Melton | David Koseruba | Charles Duke

Viewing Notes

One of my all-time favorite, go-to, movies. Also perhaps one of the last movies Robert De Niro and Al Pacino were brilliant in.

This was my first time watching this on BluRay, though I’ve seen the movie probably 20 times now.

It’s interesting to see the number of great actors who cross paths in this flick, some waxing, some waning.

Makes me want to rewatch Mann’s underrated Miami Vice again.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0013
Controller Execution Time ( Members / Movie Detail )  0.0294
Total Execution Time  0.0307
  GET DATA  
No GET data exists
  MEMORY USAGE  
546,992 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/2246
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0091 seconds)  (Hide)
0.0004   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '6ec9f3c36609a372a6cea0372baed70036cb8bef'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('12be332cb0b546de7cb5f65fae321b8c'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '6ec9f3c36609a372a6cea0372baed70036cb8bef'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 2246
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0046   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 2246
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 2246 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 2246 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 2246
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '21'
 
LIMIT 1 
0.0004   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 2246
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 2246 
0.0004   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2048
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)