Movielogr

movie poster

Rating: 10 stars

Tags

Brian Eno Los Angeles California heist robbery

Seen 2 times

Seen on: 05/07/2012, 02/28/2011 (rewatch)

View on: IMDb | TMDb

Heat (1995)

Directed by Michael Mann

Action | Crime | Drama

Most recently watched by sensoria, sensoria

Overview

Obsessive master thief Neil McCauley leads a top-notch crew on various daring heists throughout Los Angeles while determined detective Vincent Hanna pursues him without rest. Each man recognizes and respects the ability and the dedication of the other even though they are aware their cat-and-mouse game may end in violence.

Rated R | Length 170 minutes

Actors

Mykelti Williamson | Dennis Haysbert | Robert De Niro | Natalie Portman | William Fichtner | Al Pacino | Tom Sizemore | Xander Berkeley | Rick Marzan | Susan Traylor | Martin Ferrero | Bud Cort | Val Kilmer | Hank Azaria | Diane Venora | Brian Libby | Steven Ford | Henry Rollins | Jon Voight | Danny Trejo | Jeremy Piven | Vince Deadrick Jr. | Amy Brenneman | Ashley Judd | Wes Studi | Ted Levine | Kim Staunton | Robert Miranda | Tone-Lōc | Kevin Gage | Yvonne Zima | Thomas Rosales, Jr. | Terry Miller | Paul Herman | Kathryn Mullen | Rick Avery | Jimmy N. Roberts | Jerry Trimble | Hazelle Goodman | Patricia Healy | Dan Martin | Kimberly Flynn | Iva Franks Singer | Niki Harris | Tom Noonan | Ricky Harris | Ray Buktenica | Cindy Katz | Mario Roberts | Farrah Forke | Max Daniels | Begonya Plaza | Kai Soremekun | Bill McIntosh | Andre McCoy | Viviane Vives | Brad Baldridge | Andrew Camuccio | Hannes Fritsch | Trevor Coppola | Paul Moyer | Mick Gould | Peter Blackwell | Manny Perry | Mary Kircher | Kenny Endoso | Daniel O'Haco | Tim Werner | Monica Lee Bellais | Annette Goodman | Gloria Koehn Straube | Melissa S. Markess | Jimmy Star | Wendy L. Walsh | Rainell Saunders | Brian Camuccio | Amanda Graves | Emily Graves | Thomas Elfmont | Ted Harvey | Rey Verdugo | Phillip Robinson | Darren Melton | David Koseruba | Charles Duke

Viewing Notes

One of my top five movies, I’ve probably watched it 20 times now, and every time is a new experience.

This is the second or third time I’ve watched it on Blu-Ray now, and for the first time ever I figured out that Brian Eno does a lot of the music.

Before discovering that in the credits, I had tweeted earlier about how the music is an under-appreciated tension builder, especially during scenes that are otherwise quiet. There is almost always an underlying sense of foreboding, due in large part to the musical choices.

It always amazes me how many actors are in this film, including a teenage Natalie Portman, Hank Azaria, Tom Noonan, Henry Rollins, Tone Loc!

Edited this entry on 05/25/2012.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0016
Controller Execution Time ( Members / Movie Detail )  0.0252
Total Execution Time  0.0268
  GET DATA  
No GET data exists
  MEMORY USAGE  
550,304 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/7448
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0069 seconds)  (Hide)
0.0002   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = '7f2d941fad9ee9629771dd435495bd21200e69bd'
AND `ip_address` = '216.73.216.111' 
0.0004   SELECT GET_LOCK('5d73d0e95d17da393b6c9a578a8dc67e'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = '7f2d941fad9ee9629771dd435495bd21200e69bd'
AND `ip_address` = '216.73.216.111' 
0.0003   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 7448
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0004   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0030   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 7448
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 7448 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 7448 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0001   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7448
 LIMIT 1 
0.0001   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '22'
 
LIMIT 1 
0.0003   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 7448
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0002   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 7448 
0.0002   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2048
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)