Movielogr

movie poster

Rating: 6 stars

Seen 1 time

Seen on: 05/08/2011

View on: IMDb | TMDb

Thor (2011)

Directed by Kenneth Branagh

Adventure

Most recently watched by krazykat, Javitron, noahphex, zombiefreak, tylermager, noahphex, jenerator, suspectk, sensoria

Overview

Against his father Odin’s will, The Mighty Thor - a powerful but arrogant warrior god - recklessly reignites an ancient war. Thor is cast down to Earth and forced to live among humans as punishment. Once here, Thor learns what it takes to be a true hero when the most dangerous villain of his world sends the darkest forces of Asgard to invade Earth.

Rated PG-13 | Length 115 minutes

Actors

Adriana Barraza | Natalie Portman | Stellan Skarsgård | Samuel L. Jackson | Anthony Hopkins | Stan Lee | Clark Gregg | Jim Palmer | Colm Feore | Joel McCrary | Richard Cetrone | Tadanobu Asano | Rene Russo | Matt Battaglia | Jeremy Renner | Idris Elba | Dale Godboldo | J. Michael Straczynski | Douglas Tait | Kat Dennings | Ray Stevenson | Joseph Gatt | Jaimie Alexander | Chris Hemsworth | Josh Dallas | Joshua Cox | Jamie McShane | Patrick O'Brien Demsey | Tom Hiddleston | Rob Mars | Darren Kendrick | Shawn-Caulin Young | Vanessa Bednar | Luke Massy | Dakota Goyo | Buddy Sosthand | Maximiliano Hernández | Jason Camp | Hilary Pingle | Blake Silver | Carrie Lazar | Juliet Lopez | Harley Graham | Walt Simonson | Alexander Wright | Ted Allpress | Kinsey McLean | Stephen Oyoung | Seth Coltan | Justice Jesse Smith | Isaac Kappy | Matthew Ducey | Ryan Schaefer | Kelly Hawthorne | Michelle Csitos

Viewing Notes

I’ll flat out admit that Thor was never very appealing to me as a comic book hero. Norse mythology just doesn’t float my boat.

I wasn’t expecting much here, so when compared to that, it’s actually a fairly entertaining and serviceable movie, even if it does feel like a filler/bridge between Iron Man and The Avengers.

Stan Lee’s cameo was actually pretty good here, and there are some great, light hearted, laugh-out-loud moments that let you know that this movie isn’t going to take itself too seriously.

Kat Dennings, Natalie Portman, Chris Hemsworth et al, do a good job in their roles; nothing standout. Being a huge fan of The Wire, it was cool to see Idris Elba as Heimdall, even if he was barely recognizable.

Since it’s been ages since I’ve read Avengers or Thor, the plot reveal after the credits didn’t do anything for me, but I’m ok with that.

REALLY looking forward to seeing Captain America, and then also Jeremy Renner as Hawkeye in the Avengers movie. I’m a Renner fan ever since 28 Weeks Later and The Hurt Locker.

Comments

No comments yet. Log in and be the first!

  BENCHMARKS  
Loading Time: Base Classes  0.0018
Controller Execution Time ( Members / Movie Detail )  0.0272
Total Execution Time  0.0290
  GET DATA  
No GET data exists
  MEMORY USAGE  
550,944 bytes
  POST DATA  
No POST data exists
  URI STRING  
members/sensoria/movie_detail/2353
  CLASS/METHOD  
members/movie_detail
  DATABASE:  movielogr_dev (Members:$db)   QUERIES: 17 (0.0077 seconds)  (Hide)
0.0003   SELECT 1
FROM 
`ml_sessions`
WHERE `id` = 'e43360766a95014cfaef73516254751c5561172d'
AND `ip_address` = '216.73.216.111' 
0.0002   SELECT GET_LOCK('e85a7d1255521594ad4e8a5264f1d53b'300) AS ci_session_lock 
0.0002   SELECT `data`
FROM `ml_sessions`
WHERE `id` = 'e43360766a95014cfaef73516254751c5561172d'
AND `ip_address` = '216.73.216.111' 
0.0014   SELECT `username`, `user_id`
FROM `ml_users`
WHERE `username` = 'sensoria'
 
LIMIT 1 
0.0003   SELECT `MV`.`title_id`, `MT`.`tmdb_id`
FROM `ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
WHERE `MV`.`movie_id` = 2353
AND `MV`.`user_id` = 1
 LIMIT 1 
0.0003   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SET SESSION group_concat_max_len 12288 
0.0023   SELECT `MV`.`title_id`, `MV`.`movie_id`, COUNT(DISTINCT MV.title_id) AS mv_count, `title`, `prefix`, `year`, `imdb_link`, `MT`.`imdb_id`, `MT`.`tmdb_id`, `overview`, `certification`, `runtime`, `genre_id_01`, `genre_id_02`, `genre_id_03`, MAX(MP.filename) AS filename, `G1`.`genre_nameAS `genre_name_01`, `G2`.`genre_nameAS `genre_name_02`, `G3`.`genre_nameAS `genre_name_03`, `date_viewed`, `notes`, `MV`.`format_id`, `FMT`.`format_name`, `MV`.`source_id`, `SRC`.`source_name`, `MV`.`device_id`, `DVC`.`device_name`, `MV`.`rating_id`, `STR`.`star_rating`, `rewatch`, GROUP_CONCAT(DISTINCT(DR.director_name) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS directorsGROUP_CONCAT(DISTINCT(DR.tmdb_director_id) ORDER BY DR.tmdb_director_id ASC SEPARATOR "|") AS director_idsGROUP_CONCAT(DISTINCT(ACT.actor_name) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actorsGROUP_CONCAT(DISTINCT(ACT.tmdb_actor_id) ORDER BY ACT.tmdb_actor_id ASC SEPARATOR "|") AS actor_ids
FROM 
`ml_movie_titles` `MT`
LEFT JOIN `ml_movies` `MVON `MV`.`title_id` = `MT`.`title_id`
LEFT JOIN `ml_movie_posters` `MPON `MV`.`title_id` = `MP`.`title_id`
LEFT JOIN `ml_lookup_genres` `G1ON `MV`.`genre_id_01` = `G1`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G2ON `MV`.`genre_id_02` = `G2`.`genre_id`
LEFT JOIN `ml_lookup_genres` `G3ON `MV`.`genre_id_03` = `G3`.`genre_id`
LEFT JOIN `ml_lookup_formats` `FMTON `MV`.`format_id` = `FMT`.`format_id`
LEFT JOIN `ml_lookup_sources` `SRCON `MV`.`source_id` = `SRC`.`source_id`
LEFT JOIN `ml_lookup_devices` `DVCON `MV`.`device_id` = `DVC`.`device_id`
LEFT JOIN `ml_movie_ratings_ten_star` `STRON `MV`.`rating_id` = `STR`.`rating_id`
LEFT JOIN `ml_junction_movies_directors` `JMDON `MT`.`title_id` = `JMD`.`title_id`
LEFT JOIN `ml_directors_new` `DRON `JMD`.`tmdb_director_id` = `DR`.`tmdb_director_id`
LEFT JOIN `ml_junction_movies_actors` `JMAON `MT`.`title_id` = `JMA`.`title_id`
LEFT JOIN `ml_actors_new` `ACTON `JMA`.`tmdb_actor_id` = `ACT`.`tmdb_actor_id`
WHERE `MV`.`movie_id` = 2353
AND `MV`.`user_id` = 1
ORDER BY 
`date_viewedDESC 
0.0002   SET SESSION group_concat_max_len 1024 
0.0003   SELECT `event_title`, `JME`.`event_id`
FROM `ml_junction_movies_events` `JME`
LEFT JOIN `ml_movie_events` `EVON `JME`.`event_id` = `EV`.`event_id`
WHERE `JME`.`movie_id` = 2353 
0.0003   SELECT `tag`, `JMT`.`tag_id`
FROM `ml_junction_movies_tags` `JMT`
LEFT JOIN `ml_tags` `MTON `JMT`.`tag_id` = `MT`.`tag_id`
WHERE `JMT`.`movie_id` = 2353 
0.0002   SELECT `star_rating`
FROM `ml_users`
WHERE `ml_users`.`user_id` = 1
 LIMIT 1 
0.0002   SELECT `rating_id`
FROM `ml_movies` `MV`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 2353
 LIMIT 1 
0.0002   SELECT `star_rating`
FROM `ml_movie_ratings_ten_star` `MR`
WHERE `MR`.`rating_id` = '14'
 
LIMIT 1 
0.0005   SELECT `MV2`.`date_viewed`, `MV2`.`movie_id`
FROM `ml_movies` `MV`
LEFT JOIN `ml_movies` `MV2ON `MV`.`title_id` = `MV2`.`title_idAND `MV`.`user_id` = `MV2`.`user_id`
WHERE `MV`.`user_id` = 1
AND `MV`.`movie_id` = 2353
GROUP BY 
`MV2`.`movie_id`
ORDER BY `MV2`.`date_viewedDESC 
0.0003   SELECT `comment_id`, `comment`, `commenter_id`, `timestamp`, `username`, `email_address`
FROM `ml_comments` `MC`
JOIN `ml_users` `MUON `MU`.`user_id` = `MC`.`commenter_id`
WHERE `movie_id` = 2353 
0.0003   SELECT `username`, `date_viewed`, `MV`.`movie_id`
FROM `ml_users` `MU`
JOIN `ml_movies` `MVON `MV`.`user_id` = `MU`.`user_id`
JOIN `ml_movie_titles` `MTON `MT`.`title_id` = `MV`.`title_id`
WHERE `MT`.`title_id` = 2155
ORDER BY 
`date_viewedDESC
 LIMIT 10 
  HTTP HEADERS  (Show)
  SESSION DATA  (Show)
  CONFIG VARIABLES  (Show)